進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-3108202018173800
論文名稱(中文) 改良由分子-奈米共振腔所形成的量子強耦合單元
論文名稱(英文) Improvement in quantum strong coupling units consisting of molecules and nanocavities
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 108
學期 2
出版年 109
研究生(中文) 周瑋倫
研究生(英文) Wei-Lun Chou
學號 L76071134
學位類別 碩士
語文別 中文
論文頁數 99頁
口試委員 指導教授-陳宣燁
口試委員-陳祺
口試委員-張世慧
中文關鍵字 量子強耦合  分子  奈米共振腔  DNA修飾 
英文關鍵字 quantum strong coupling  molecules  nanocavitiesDNA functionalized 
學科別分類
中文摘要 強耦合是一個通往量子領域的重要工作,也是將來能夠用於量子計算的基石。本研究透過金奈米粒子與金膜,及帶有螢光分子的DNA將其組合以製作分子-奈米共振腔的量子強耦合單元,透過改善金膜平整度以及更改實驗條件,預期目標能成功製作出單分子的強耦合。
由先前本實驗室陳浚弘學長利用DNA製作分子-奈米共振腔結構的架構1雖完整,但金粒子於金膜分布數量僅~6個/(50 µm)2以及散射光譜上有出現強耦合現象(雙峰值)的比例僅佔量測總數的~20%,為了提高在金膜上的強耦合單元數量,首先透過使用原子級起伏的室溫蒸鍍剝離金膜取代原先奈米級起伏的室溫蒸鍍金膜,接著藉由改變置換金粒子離心後的上清液,由鹽類混合溶液取代原先的去離子水,以及改變此鹽類混合溶液的濃度、減少金粒子修飾金膜時間和透過調控DNA濃度以及改變DNA段數來優化此分子-奈米共振腔的製程。
這些優化步驟使得金膜上平均金粒子數量在百倍暗場視野下((50 µm2)),數量由~6顆增加至~436顆,提升了~72倍、強耦合現象的比例提高由~20%提高到~36%,增加幅度為80%,且金粒子修飾上金膜的製程時間也大幅縮短了,由原本的6小時縮短至30秒,修飾速度增加了719倍。
英文摘要 In this study, gold nanoparticles, gold films, and DNA with fluorescent molecules were combined to produce strong coupling units consisting of molecules and nanocavities. Although the structure made by the previous student in this laboratory is completed, the number of gold particles distributed in the gold film is only ~6 particles/(50 μm)2 and the proportion of strong coupling units showing double peaks in the scattering spectrum only accounts for ~20% of the total number.
We increase efficiency of the strong coupling units by replacing the gold film with the stripping gold film with atomic-level flatness, then changing the supernatant after centrifugation of replacement gold particles, reducing incubation time, adjusting DNA concentration, and changing the number of DNA segments.
These optimization steps make the average number of gold particles on the gold film under a 100x dark field view (~50 µm2), the number increased from ~6 to ~436, which is ~72 times higher, and the proportion of strong coupling phenomenon has increased from ~20% to ~36%, and the increase rate is 80%.
The process time for gold particles to modify the gold film has also been greatly shortened from the original 6 hours to 30 seconds, the modification speed increased by 719 times.
論文目次 口試證明...i
中文摘要...ii
Abstract...iii
目錄...ix
致謝...xi
圖目錄...xiii
表目錄...xvi
第一章 緒論...1
1-1研究背景與文獻回顧...1
1-2研究動機與目的...5
第二章 研究方法...6
2-1 實驗原理介紹...6
2-1-1表面電漿共振(surface plasmon resonance,SPR)...6
2-1-2強耦合結構現象原理...6
2-1-3 DNA修飾於金膜、金粒子表面原理...8
2-2使用儀器介紹...10
2-2-1熱蒸鍍機...10
2-2-2掃描式電子顯微鏡(Scanning Electron Microscope,SEM)...10
2-2-3穿透光譜儀(U-4100 HITACHI)...12
2-2-4原子力顯微鏡 (Atomic Force Microscope, AFM)...12
2-3 不同金膜之製作方式...14
2-3-1室溫蒸鍍金膜製作...14
2-3-2室溫蒸鍍剝離金膜製作...15
2-3-3高溫蒸鍍金膜製作...16
2-4分子-奈米共振腔的樣品製作方式...17
2-3-4金粒子-金膜共振腔插入螢光分子之製程...20
2-3-4-1編號一結構的製作...21
2-3-4-2編號二、三結構的製作...25
2-3-4-3編號四結構的製作...30
2-3-4-5實驗中所需用到的溶液與其配置方法...30
2-4驗證DNA鍵結實驗...35
2-4-1 DNA雜合實驗(DNA hybridization)...35
2-4-2 DNA變性實驗(DNA denaturation)...38
第三章 實驗結果...43
3-1不同製程金膜製作結果...43
3-1-1室溫蒸鍍金膜...43
3-1-2室溫蒸鍍剝離金膜...45
3-1-3高溫蒸鍍金膜...48
3-2高溫蒸鍍金膜在不同的DNA修飾條件下其金膜表面之DNA分布狀況...50
3-2-1利用AFM影像觀察不同DNA修飾於高溫蒸鍍金膜表面之效果...50
3-2-2目前最佳的DNA修飾條件於高溫蒸鍍金膜之成果...53
3-3對不同製程條件之金膜進行相同實驗,觀察金粒子分布於金膜表面差異...55
3-3-1以室溫蒸鍍金膜進行分子-奈米共振腔的製作...55
3-3-2以室溫蒸鍍剝離金膜進行強分子-奈米共振腔的製作...57
3-4 DNA functionalized的製程優化...59
3-4-1使用不同濃度的鹽類混合溶液作為修飾金粒子步驟中離心後置換金粒子的上清液...59
3-4-2測試金粒子修飾於金膜的時間改變所產生的影響...67
3-4-3優化修飾金粒子和金膜的DNA濃度...71
3-4-4減少組成分子-奈米共振腔所結構所使用的DNA段數...79
3-5 利用已修飾DNA的金粒子與含有部分雲母的金膜進行結合,確認DNA僅會修飾於金膜表面...89
第四章 結論...92
4-1不同製程條件之金膜比較...92
4-2高溫蒸鍍金膜在不同的DNA修飾條件下其金膜表面之DNA分布狀況...94
4-3 DNA functionalized的製程優化...95
參考文獻...98

參考文獻 1. 陳浚弘(2019)。螢光分子與單一奈米共振腔的量子強耦合逼近(未出版博碩士論文)。國立成功大學,台南市。.
2. Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016).
3. Chikkaraddy, R. et al. Mapping Nanoscale Hotspots with Single-Molecule Emitters Assembled into Plasmonic Nanocavities Using DNA Origami. Nano Lett. 18, 405–411 (2018).
4. Hegner, M., Wagner, P. &Semenza, G. Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy. Surf. Sci. 291, 39–46 (1993).
5. McPeak, K. M. et al. Plasmonic films can easily be better: Rules and recipes. ACS Photonics 2, 326–333 (2015).
6. Lukas Novotny, B. H. Principles of Nano-Optics - Lukas Novotny, Bert Hecht - Google Books. (2006).
7. Tischler, J. R. et al. Solid state cavity QED: Strong coupling in organic thin films. Org. Electron. 8, 94–113 (2007).
8. Erdmann, V. A. &Barciszewski, J. DNA and RNA nanobiotechnologies in medicine: Diagnosis and treatment of diseases. DNA and RNA Nanobiotechnologies in Medicine: Diagnosis and Treatment of Diseases (Springer Berlin Heidelberg, 2013). doi:10.1007/978-3-642-36853-0.
9. Bhushan, B. Springer Handbook of Nanotechnology, 3rd ed. Springer-Verlag (2010). doi:10.1007/978-3-642-02525-9.
10. Koo, K. M., Sina, A. A. I., Carrascosa, L. G., Shiddiky, M. J. A. &Trau, M. DNA-bare gold affinity interactions: Mechanism and applications in biosensing. Analytical Methods (2015) doi:10.1039/c5ay01479d.
11. Kimura-Suda, H., Petrovykh, D. Y., Tarlov, M. J. &Whitman, L. J. Base-dependent competitive adsorption of single-stranded DNA on gold. J. Am. Chem. Soc. 125, 9014–9015 (2003).
12. Reimer, L. Scanning Electron Microscopy: Physics of Image Formation and Microanalysis, Second Edition. Measurement Science and Technology vol. 11 (2000).
13. Atomic Force Microscopy/Scanning Tunneling Microscopy 2. Atomic Force Microscopy/Scanning Tunneling Microscopy 2 (Springer US, 1997). doi:10.1007/978-1-4757-9325-3.
14. Taton, T. A. Preparation of Gold Nanoparticle-DNA Conjugates. Curr. Protoc. Nucleic Acid Chem. 9, 12.2.1-12.2.12 (2002).
15. Huang, E., Satjapipat, M., Han, S. &Zhou, F. Surface structure and coverage of an oligonucleotide probe tethered onto a gold substrate and its hybridization efficiency for a polynucleotide target. Langmuir 17, 1215–1224 (2001).
16. Levine, L. A., Junker, M., Stark, M. &Greenleaf, D. A DNA Melting Exercise for a Large Laboratory Class. J. Chem. Educ. 92, 1928–1931 (2015).
17. Tips, P. Annealing Oligonucleotides. Quality 2009–2009 (2009).
18. Protocol for Annealing Oligonucleotides — DNA or RNA Annealing(https://www.sigmaaldrich.com/technical-documents/protocols/biology/annealing-oligos.html).
19. Demers, L. M. et al. A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal. Chem. 72, 5535–5541 (2000).
20. Hill, H. D., Millstone, J. E., Banholzer, M. J. &Mirkin, C. A. The role radius of curvature plays in thiolated oligonucleotide loading on gold nanoparticles. ACS Nano 3, 418–424 (2009).
21. Mourougou-Candoni, N., Naud, C. &Thibaudau, F. Adsorption of thiolated oligonucleotides on gold surfaces: An atomic force microscopy study. Langmuir 19, 682–686 (2003).
22. Zhou, W., Lin, Q. Y., Mason, J. A., Dravid, V. P. &Mirkin, C. A. Design Rules for Template-Confined DNA-Mediated Nanoparticle Assembly. Small 14, 1–7 (2018).
23. IDT(https://sg.idtdna.com/calc/analyzer).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw