進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-3108202013142100
論文名稱(中文) 奈米井陣列結構應用於膀胱癌指標之非標記檢測
論文名稱(英文) Plasmonic Nanowell Array for Label-Free Detection of Bladder Cancer Biomarkers
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 108
學期 2
出版年 109
研究生(中文) 陳福慶
研究生(英文) Fu-Ching Chen
學號 L76061082
學位類別 碩士
語文別 中文
論文頁數 69頁
口試委員 指導教授-林俊宏
口試委員-張世慧
口試委員-陳宣燁
口試委員-張雯惠
中文關鍵字 局域化表面電漿共振  折射率感測器  膀胱癌非標籤分子偵測 
英文關鍵字 localized surface plasmon resonance  propagating surface plasmon resonance  refractive index sensor  label-free sensing  bladder cancer 
學科別分類
中文摘要 本論文提出利用奈米金屬轉印術可以簡單且快速的低成本製作出奈米井結構。解決了以往研究方法為了使奈米結構在靈敏度上有較好的表現,其中多以昂貴又耗時的電子束微影來製作奈米結構,而為了使量測品質更好,我們也使用了嚴格耦合波分析法來針對結構的參數進行調整,並將其應用於及膀胱癌分子檢測中。
現階段醫療上檢測膀胱癌的方式多為使用膀胱鏡來進行,此種方法為侵入性診療方式,擁有尿道感染之風險,其檢查過程會造成不適感,降低人們檢查之意願,因此開發一個非侵入式的檢測方法是極為重要的。
近年來有其他研究指出在膀胱癌患者的尿液檢體中具有可以針對膀胱癌進行辨別的指標分子玻尿酸(hyaluronic acid) 透過對患者尿液中的指標分子含量分析來達到膀胱癌的診斷。本研究所提出的奈米井結構已能偵測到 1.87×10^(-9) g/mL低於cut-off limit 〖1.67×10〗^(-8) g/mL,代表我們的NWA基板在臨床醫學上具有診斷的潛力。
英文摘要 In this paper, it is proposed that nanowell array (NWA) can be fabricated simply and quickly at low cost by using nanotransfer printing. Solved the previous research methods in order to make nanostructures has better performance on sensitivity, the more expensive and time consuming electron beam lithography to make nanostructures, and in order to make the measurement quality is better, we also use the rigorous coupled wave analysis method for the parameters of the structure adjustment, and applied to and molecular detection of bladder cancer.
In recent years, other studies have pointed out that hyaluronic acid a marker molecule that can be used to distinguish bladder cancer in urine samples of patients with bladder cancer, can be used to diagnose bladder cancer by analyzing the indicator molecule content in urine of patients with bladder cancer. The NWA proposed in this study has been able to detect 1.87×10^(-9) g/mL lower than the cut off limit 〖1.67×10〗^(-8) g/mL, indicating that our NWA substrate has the potential for clinical diagnosis.

論文目次 第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 論文架構 2
第二章 理論原理與文獻回顧 3
2.1傳統檢測以及診斷膀胱癌方法 3
2.2表面電漿共振 4
2.2.1傳播式表面電漿共振原理 4
2.2.2 Cavity Resonance 原理 5
2.2.3侷域化表面電漿共振原理 7
2.2.4 SPR應用於非標籤分子檢測之發展 8
第三章 研究方法 19
3.1奈米井陣列數值模擬方法 19
3.2 NWA結構製作 19
3.2.1矽母模製作 19
3.2.2奈米金屬轉印微影術[20] 20
3.2.2.1矽母模清洗 21
3.2.2.1.1 實驗材料 21
3.2.2.1.2 實驗設備 21
3.2.2.1.3 矽母模清洗流程 21
3.2.2.2 抗沾黏處理 22
3.2.2.2.1 實驗材料 22
3.2.2.2.2 實驗設備 22
3.2.2.2.3 抗沾黏處理流程 22
3.2.2.3 金薄膜沉積 23
3.2.2.4 金薄膜轉印 23
3.3 折射率靈敏度量測架構及方法 23
3.3.1 實驗材料 23
3.3.2 實驗設備 23
3.3.3反射光譜及靈敏度量測 24
3.4 HA分子鍵結 24
3.4.1實驗設備 24
3.4.2實驗材料 25
3.4.3實驗材料配置 25
3.4.4 HA分子量測 26
3.4.5 HA分子量測方法 27
3.5 檢視結構之機台 27
第四章 實驗與數值模擬分析結果 31
4.1 NWA結構之光學特性模擬分析 31
4.1.1NWA結構參數探討 31
4.2 NWA結構之實驗結果 32
4.3膀胱癌非標籤分子偵測應用 34
4.3.1HA分子偵測參數最佳化 35
4.3.2HA分子偵測 36
第五章 結論與未來展望 64
5.1結論 64
5.2未來展望 64
第六章 參考文獻 66

參考文獻 1. B. Špačková, P. Wrobel, M. Bocková, and J. Homola, "Optical biosensors based on plasmonic nanostructures: a review," Proceedings of the IEEE 104, 2380-2408 (2016).
2. A. Homami and F. Ghazi, "MicroRNAs as biomarkers associated with bladder cancer," Medical journal of the Islamic Republic of Iran 30, 475 (2016).
3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," nature 424, 824-830 (2003).
4. K.-L. Lee, P.-W. Chen, S.-H. Wu, J.-B. Huang, S.-Y. Yang, and P.-K. Wei, "Enhancing surface plasmon detection using template-stripped gold nanoslit arrays on plastic films," ACS nano 6, 2931-2939 (2012).
5. M. Sobnack, W. Tan, N. Wanstall, T. Preist, and J. Sambles, "Stationary surface plasmons on a zero-order metal grating," Physical review letters 80, 5667 (1998).
6. E. A. Coronado, E. R. Encina, and F. D. Stefani, "Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale," Nanoscale 3, 4042-4059 (2011).
7. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment," The Journal of Physical Chemistry B 107, 668-677 (2003).
8. P. Biagioni, J.-S. Huang, and B. Hecht, "Nanoantennas for visible and infrared radiation," Reports on Progress in Physics 75, 024402 (2012).
9. W.-H. Chang, Z.-Y. Yang, T.-W. Chong, Y.-Y. Liu, H.-W. Pan, and C.-H. Lin, "Quantifying Cell Confluency by Plasmonic Nanodot Arrays to Achieve Cultivating Consistency," ACS sensors 4, 1816-1824 (2019).
10. K.-L. Lee, J.-B. Huang, J.-W. Chang, S.-H. Wu, and P.-K. Wei, "Ultrasensitive biosensors using enhanced Fano resonances in capped gold nanoslit arrays," Scientific reports 5, 8547 (2015).
11. M. P. Raphael, J. A. Christodoulides, S. P. Mulvaney, M. M. Miller, J. P. Long, and J. M. Byers, "A new methodology for quantitative LSPR biosensing and imaging," Analytical chemistry 84, 1367-1373 (2012).
12. K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, "Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements," Nano letters 12, 1655-1659 (2012).
13. F. Yesilkoy, R. A. Terborg, J. Pello, A. A. Belushkin, Y. Jahani, V. Pruneri, and H. Altug, "Phase-sensitive plasmonic biosensor using a portable and large field-of-view interferometric microarray imager," Light: Science & Applications 7, 17152-17152 (2018).
14. W.-Y. Chen, C.-H. Lin, and W.-T. Chen, "Plasmonic phase transition and phase retardation: essential optical characteristics of localized surface plasmon resonance," Nanoscale 5, 9950-9956 (2013).
15. B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, and S. Liu, "A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm," Advanced Materials 30, 1706031 (2018).
16. W. Li, X. Jiang, J. Xue, Z. Zhou, and J. Zhou, "Antibody modified gold nano-mushroom arrays for rapid detection of alpha-fetoprotein," Biosensors and Bioelectronics 68, 468-474 (2015).
17. N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. Vandenbosch, L. Lagae, and V. V. Moshchalkov, "Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing," Nano letters 11, 391-397 (2011).
18. K.-L. Lee, M.-L. You, X. Shi, Y.-R. Li, K. Ueno, H. Misawa, and P.-K. Wei, "Injection compression molding of transmission-type Fano resonance biochips for multiplex sensing applications," Applied Materials Today 16, 72-82 (2019).
19. J. A. Jackman, A. R. Ferhan, and N.-J. Cho, "Nanoplasmonic sensors for biointerfacial science," Chemical Society Reviews 46, 3615-3660 (2017).
20. C.-C. Liang, W.-H. Chang, and C.-H. Lin, "Nanotransfer printing of plasmonic nano-pleat arrays with ultra-reduced nanocavity width using perfluoropolyether molds," Journal of Materials Chemistry C 4, 4491-4504 (2016).
21. S.-C. Li, J.-F. Jia, X. Ma, Q.-K. Xue, Y. Han, and F. Liu, "Fabricating artificial nanowells with tunable size and shape by using scanning tunneling microscopy," Applied physics letters 89, 123111 (2006).
22. M. Wood, "Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications," Journal of the Royal Society Interface 4, 1-17 (2007).
23. E. M. Hicks, X. Zhang, S. Zou, O. Lyandres, K. G. Spears, G. C. Schatz, and R. P. Van Duyne, "Plasmonic Properties of Film over Nanowell Surfaces Fabricated by Nanosphere Lithography," The Journal of Physical Chemistry B 109, 22351-22358 (2005).
24. J.-F. Masson, M.-P. Murray-Méthot, and L. S. Live, "Nanohole arrays in chemical analysis: manufacturing methods and applications," Analyst 135, 1483-1489 (2010).
25. K. A. Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annu. Rev. Phys. Chem. 58, 267-297 (2007).
26. P. Singh, "LSPR Biosensing: Recent Advances and Approaches," in Reviews in Plasmonics 2016, C. D. Geddes, ed. (Springer International Publishing, Cham, 2017), pp. 211-238.
27. S. Unser, I. Bruzas, J. He, and L. Sagle, "Localized surface plasmon resonance biosensing: current challenges and approaches," Sensors 15, 15684-15716 (2015).
28. C.-H. Lin, H.-L. Chen, W.-C. Chao, C.-I. Hsieh, and W.-H. Chang, "Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis," Microelectronic engineering 83, 1798-1804 (2006).
29. T. A. Scott Jr, "Refractive Index of Ethanol–Water Mixtures and Density and Refractive Index of Ethanol–Water–Ethyl Ether Mixtures," The Journal of physical chemistry 50, 406-412 (1946).
30. K.-Y. Chu and A. R. Thompson, "Densities and Refractive Indices of Alcohol-Water Solutions of n-Propyl, Isopropyl, and Methyl Alcohols," Journal of chemical and engineering data 7, 358-360 (1962).
31. N. A. Byzova, I. V. Safenkova, E. S. Slutskaya, A. V. Zherdev, and B. B. Dzantiev, "Less is more: a comparison of antibody–gold nanoparticle conjugates of different ratios," Bioconjugate Chemistry 28, 2737-2746 (2017).
32. H. Gao, J. McMahon, M. Lee, J. Henzie, S. Gray, G. C. Schatz, and T. W. Odom, "Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays," Optics express 17, 2334-2340 (2009).
33. T. C. Laurent and J. Fraser, "Hyaluronan," The FASEB journal 6, 2397-2404 (1992).
34. A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, "Improving the instrumental resolution of sensors based on localized surface plasmon resonance," Analytical chemistry 78, 4416-4423 (2006).
35. M. Rippa, R. Castagna, S. Brandi, G. Fusco, M. Monini, D. Chen, J. Zhou, J. Zyss, and L. Petti, "Octupolar Plasmonic Nanosensor Based on Ordered Arrays of Triangular Au Nanopillars for Selective Rotavirus Detection," ACS Applied Nano Materials 3, 4837-4844 (2020).
36. V. B. Lokeshwar, C. ÖBek, H. T. Pham, D. Wei, M. J. Young, R. C. Duncan, M. S. Soloway, and N. L. Block, "Urinary hyaluronic acid and hyaluronidase: markers for bladder cancer detection and evaluation of grade," The Journal of urology 163, 348-356 (2000).
37. T. Hao, J. Chen, S. Zhi, Q. Zhang, G. Chen, and F. Yu, "Comparison of bone marrow‑vs. adipose tissue‑derived mesenchymal stem cells for attenuating liver fibrosis," Experimental and Therapeutic Medicine 14, 5956-5964 (2017).
38. R. Batista, N. Vinagre, S. Meireles, J. Vinagre, H. Prazeres, R. Leão, V. Máximo, and P. Soares, "Biomarkers for Bladder Cancer Diagnosis and Surveillance: A Comprehensive Review," Diagnostics 10, 39 (2020).

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw