進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-3108201923204800
論文名稱(中文) 鎳鉻合金718直接能量沉積3D列印製程優化
論文名稱(英文) 3D Printing Process Optimization of Inconel 718 Material Direct Energy Deposition
校院名稱 成功大學
系所名稱(中) 工程科學系
系所名稱(英) Department of Engineering Science
學年度 107
學期 2
出版年 108
研究生(中文) 王秀宸
研究生(英文) Hsiu-Chen Wang
學號 N96061208
學位類別 碩士
語文別 中文
論文頁數 115頁
口試委員 指導教授-李輝煌
口試委員-李政男
口試委員-吳國才
口試委員-黃聖杰
中文關鍵字 積層製造  金屬工件  表面平整度  孔隙率  稀釋率  資料庫  智慧化機械 
英文關鍵字 Additive manufacturing  Laser cladding  Dilution  Porosity  Thin-wall metal parts 
學科別分類
中文摘要 直接能量沉積製程或稱為金屬披覆,是一種以金屬為材料之積層製造技術,原理為將高能量雷射光束輸出於同軸噴出之金屬粉末,藉由雷射光束熱效應熔融工件表面形成熔池,同時使金屬粉末融化沉積於融池內形成披覆層,經由多層疊加製造出立體物件。不同於傳統減法製程,因節省模具製造時間可縮短生產週期、製造出更複雜立體物件以及降低大量材料的消耗,因此近年此技術正逐漸應用於一些高價值之金屬產品,如航太零件及汽車零件,雖然此技術有許多的優點,但此製程產品仍有表面平整度不佳和工件內部孔洞生成問題,使工件無法符合加工精度與機械性質不足等瓶頸。
本研究將以本校組裝之直接能量製程設備進行機台整合及製程實驗,於初期決定各製程參數設定值或範圍,而後針對三個顯著控制因子-雷射功率、掃描速度及供粉量進行一次因子實驗,分析其對稀釋率與孔隙率之影響,並找出製程最佳化之趨勢,最後建立並驗證「成品品質預測方程式」,以達到此技術智慧化的目標。
英文摘要 AM (Additive manufacturing) is a novel technique to manufacture physical parts layer by layer using discrete materials such as liquid, powder, silk, film, plastic or paper plate, block, etc. which is different from the traditional processing methods using equipment to subtract material. Direct energy deposition (DED), also known as laser cladding, is a metal AM manufacturing process which uses high power laser combined with co-axial powder delivery to additively manufacture metal layered structure. Via continuous accumulation of layers, engineers can use DED to make three dimensional objects directly.

Although the DED additive manufacturing technology has many advantages, there are still some bottlenecks, such as low deposition efficiency, surface unevenness, pores, and poor mechanical properties that need to be improved. In this research, the fore-mentioned problems will be solved by designed one-factor-at-a-time experiments. Analyze the interaction between parameters and product quality then vary the processing parameters to solve these problems.

One-factor-at-a-time experiments through varying three significant parameters--laser power, powder feeding rate, and laser scanning speed then relating quality and optimal conditions to these three parameters. Finally, a mathematic model was proposed to quantilize and predict the quality of DED parts. This mathematic model can be used as an initial guess for quick DED process setup and obtain reasonable results in a short period of time. With this model, an experiment based database can be established then DED process engineers will be able to fabricate high quality products in a short period of time.
論文目次 摘要 I
Extended Abstract II
誌謝 XXII
目錄 XXIII
表目錄 XXVII
圖目錄 XXIX
符號說明 XXXV
第一章、緒論 1
1-1 前言 1
1-2 研究動機與目的 4
1-3 研究方法 7
1-4 文獻回顧 9
1-5 文章架構 26
第二章、相關技術與理論背景 28
2-1 積層製造技術 28
2-2 金屬積層製造 29
2-2-1 選擇性雷射燒結 29
2-2-2 選擇性雷射熔化 29
2-2-3 直接能量沉積 30
2-3 雷射相關技術 32
2-3-1 雷射器構成及原理 32
2-3-2 光纖雷射 33
2-4 金屬粉末材料性質 39
2-4-1 粉末之成分分析 39
2-4-2 粉末之粒徑分佈分析 40
2-4-3 粉末之形貌分析 42
2-5 製程參數 43
2-6 製成品質指標 45
2-6-1 稀釋率 45
2-6-2 孔隙率 46
2-6-3 披覆效率 48
第三章、實驗設備與初步製程優化 49
3-1 實驗設備 49
3-2 雷射頭披覆焦點 60
3-2-1 粉末流穩定性 60
3-2-2 粉末流集中範圍 62
3-3 氣路優化與稀釋率趨勢 64
3-4 單層披覆實驗 69
3-4-1 600 μm直徑光纖 69
3-4-2 1000 μm直徑光纖 70
第四章、製程最佳化與模型驗證 71
4-1 顯著因子一次因子實驗 71
4-1-1 600 μm直徑光纖 72
4-1-2 1000 μm直徑光纖 77
4-2 成品品質預測模型 84
4-2-1 稀釋率預測方程式 84
4-2-2 模型驗證 89
第五章、製程成品披覆 92
5-1 製程披覆路徑規劃 92
5-1-1路徑規劃 92
5-1-2 不同路徑披覆結果 96
5-1-3 披覆路徑優化 100
5-2 成品披覆 102
第六章、結論與未來工作 105
6-1 結論 105
6-2 未來工作 109
參考文獻 110
索引 113
參考文獻 [1] 陳蒼杰,圖解雷射應用與原理,世茂出版有限公司,台灣(2001)。
[2] 劉國基、張百齊,Nd-YAG雷射的加工應用,遠東學報,台灣(2001)。
[3] 楊隆昌,雷射發展的趨勢與應用,中工高雄會刊,台灣(2014)。
[4] Subrata Mondal, C. P. Paul, L. M. Kukreja, Asish Bandyopadhyay, and Pradip Kumar Pal, "Application of Taguchi-based gray relational analysis for evaluating the optimal laser cladding parameters for AISI1040 steel plane surface," The International Journal of Advanced Manufacturing Technology, pp. 1-6, 2013.
[5] Yao-Min Shi, Simulation and Improvement of the SS 316L Powder Flow in Direct Energy Deposition Process, MS Thesis, Department of Engineering Science, National Cheng Kung University, 2017.
[6] Yanmin Li, Haiou Yang, Xin Lin, Jianguo Li, and Yaohe Zhou, "The influences of processing parameters on forming characterizations during laser rapid forming," Materials Science and Engineering: A, Vol. 360, No. 1, pp. 18-25, 2003.
[7] Gangxian Zhu, Dichen Li, Gang Pi, and Yiping Tang, "The influence of laser and powder defocusing characteristics on the surface quality in laser direct metal deposition," Optics & Laser Technology, Vol. 44, No .2, pp. 349-356, 2012.
[8] Kai Zhang, Shijie Wang, Weijun Liu, and Xiaofeng Shang, "Characterization of stainless steel parts by laser metal deposition shaping," Materials & Design, Vol. 55, pp. 104-119, 2014.
[9] Kar, A. and Mazumder, J., "Extended solid solution and nonequilibrium phase diagram for Ni-Al alloy formed during laser cladding," Metallurgical Transactions A, Vol. 20, pp. 363-371, March, 1989.
[10] J. Dutta Majumdar, A. Pinkerton, Z.Liu, I. Manna, and L. Li, "Microstructure characterisation and process optimization of laser assisted rapid fabrication of 316L stainless steel," Applied Surface Science, Vol. 247, No. 1, pp. 320-327, 2005.
[11] Hussam El Cheikha, Bruno Couranta, Samuel Branchua,Xiaowei Huangc, Jean-Yves Hascoëtb, and Ronald Guilléna, "Direct Laser Fabrication process with coaxial powder projection of 316L steel. Geometrical characteristics and microstructure characterization of wall structures," Optics and Lasers in Engineering, Vol. 50, No. 12, pp. 1779-1784, 2012.
[12] G. P. Dinda, A. K. Dasgupta, and J. Mazumder, "Laser aided direct metal deposition of Inconel 625 superalloy: microstructural evolution and thermal stability," Materials Science and Engineering: A, Vol. 509, No. 1, pp. 98-104, 2009.
[13] Tan Hua, "Temperature Measurement and Research on Microstructure Controlling in Laser Rapid Forming Process," Master Thesis, Department of Materials Processing Engineering, Northwestern Polytechnical University, 2005.
[14] Hyoung-Keun Lee, "Effects of the cladding parameters on the deposition efficiency in pulsed Nd:YAG laser cladding," Journal of materials processing technology, Vol. 202, No. 1, pp. 321-327, 2008.
[15] Chen, X. and Tao, Z., "Maximum thickness of the laser cladding," Key Engineering Materials, Vol. 46, pp. 381-386, 1989.
[16] Kar, A. and Mazumder, J., "Extended solid solution and nonequilibrium phase diagram for Ni-Al alloy formed during laser cladding," Metallurgical Transactions A, Vol. 20, pp. 363-371, 1989.
[17] Schneider, M.F., Laser Cladding with Powders, Ph.D. thesis, University of Twente at Enschede, The Netherlands, 1998.
[18] Alireza Fathi, Ehsan Toyserkani, and Amir Khajepour, "Prediction of melt pool depth and dilution in laser powder deposition," Journal of Physics D: Applied Physics, Vol. 39, No. 12, pp. 2613-2623, 2006.
[19] Pinkerton, Andrew J., "Modelling the geometry of a moving laser melt pool and deposition track via energy and mass balances." Journal of Physics D: Applied Physics, Vol. 37, No. 14, pp. 1885-1895, 2004.
[20] 葉錦清,3D列印(積層製造)產業發展現況分析,光連雙月刊,台灣(2016)。
[21] 雷射技術讀本,台灣基恩斯股份有限公司,台灣(2015)。
[22] 李名言,鎳基合金材質特性介紹,中工高雄會刊,台灣(2013)。
[23] Benjamin Bax, Rohan Rajput, Richard Kellet, and Martin Reisacher, ‘‘Systematic evaluation of process parameter maps for laser cladding and directed energy deposition,’’ Additive Manufacturing, Vol. 21, pp. 487-494, 2018.
[24] Yongjun Huang, "Characterization of dilution action in laser-induction hybrid cladding," Optics & Laser Technology, Vol. 43, No. 5, pp. 965-973, 2011.
[25] Chongliang Zhong, Jing Chen, Stefanie Linnenbrink, Andres Gasser, Shang Sui, and Reinhart Poprawe, ‘‘A Comparative Study of Inconel 718 Formed by High Deposition Rate Laser Metal Deposition with GA Powder and PREP Powder,’’ Materials and Design, Vol. 107, pp. 386-392, 2016.
[26] H. QI, M. AZER, and A. RITTER, ‘‘Studies of Standard Heat Treatment Effects on Microstructure and Mechanical Properties of Laser Net Shape Manufactured INCONEL 718,’’ Metallurgical and Materials Transaction A, Vol. 40, pp. 2410-2422, 2009.
[27] Pei-Yi Lin, Analysis of Process Optimization and Microstructure Characterization of the SS316L in Direct Energy Deposition, MS Thesis, Department of Engineering Science, National Cheng Kung University, 2018.
[28] Ryo Koikea, Ryo Ashidaa, Keiichi Yamazakia, Yasuhiro Kakinumaa, Tojiro Aoyamaa, Yohei Odab, Tatsuhiko Kuriyab, and Makoto Fujishimab, ‘‘Graphical Evaluation Method for Void Distribution in Direct Energy Deposition,’’ Procedia Manufacturing, Vol. 6, pp. 105-112, 2016.
[29] Lakshmi L. Parimi, Ravi G. A., Daniel Clark, and Moataz M. Attallah, ‘‘Microstructural and Texture Development in Direct Laser Fabricated IN718,’’ Materials Characterization, Vol. 89, pp. 102-111, 2014.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw