進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-3108201722141600
論文名稱(中文) 以水化學特徵研析澎湖地區地下水鹽化潛在成因
論文名稱(英文) Utilizing the Hydrochemical Methods to Characterize the Underlying Cause behind Groundwater Salinization in Penghu
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系碩士在職專班
系所名稱(英) Department of Hydraulics & Ocean Engineering (on the job class)
學年度 105
學期 2
出版年 106
研究生(中文) 黃振宏
研究生(英文) Chen-Hung Huang
電子信箱 coc12ph@gmail.com
學號 N87041097
學位類別 碩士
語文別 中文
論文頁數 127頁
口試委員 召集委員-陳主惠
口試委員-李振誥
口試委員-徐國錦
口試委員-許少瑜
口試委員-李哲瑋
指導教授-羅偉誠
中文關鍵字 水化學  澎湖  海水入侵  地下水鹽化成因 
英文關鍵字 hydrochemical  Penghu  seawater intrusion  Underlying Cause behind Groundwater Salinization 
學科別分類
中文摘要   澎湖地區具有蒸發量大且豐枯水期雨量顯著差異的水文特性,湖庫水源蓄存不易,長久以來地下水在水源供應上一直扮演重要的角色。然由於地下水資源持續過度開發,已導致部分地區發生海水入侵和地下水鹽化現象,進而影響澎湖水資源的整體利用。在沿海區域的海水入侵地下水情形是一種普遍存在的地質水文災害,一般發生在超抽地下水導致地下水位降低,海水橫向或垂直的入侵,造成地下水質變化(Bark et al.,1998;Barlow and Reichard,2010)。沿海含水層鹽化的原因,最直接因素可能為海水入侵,其次也可能涉及一系列複雜的水文地質與水文化學作用,以不同方式影響地下水質的過程,例如海水與地下水層混合、水-岩相互作用、人為污染等(Vengosh et al.,2005)。氣候變遷導致海平面上升,可能造成沿海含水層鹽化加劇(Werner and Simmons,2009;Green et al.,2011)。
  因此,為評估澎湖地區海水入侵及地下水鹽化之狀況,並探討地下水鹽化成因及機制,本研究先行蒐集相關水文、地表、水文地質等資料,建立澎湖地區地下水環境基本資訊,並於澎湖地區進行豐枯水期共45口次地下水採樣與水質分析工作。檢測分析項目以地下水鹽化判釋指標為基礎,包括導電度、氯鹽、總溶解固體物及鹽度,另再增加分析水質中鈉、鉀、鈣、鎂、硫酸鹽、碳酸根及碳酸氫根等陰陽離子項目,透過分析地下水中離子組成與相對關係可進一步了解地下水鹽化的機制與成因,對於地下水資源永續利用有重要的參考價值。
  研究成果顯示,澎湖地區地下水鹽化原因除海水入侵外,在部分地區地下含水層中,仍有呈現受到地質中可溶性礦物質溶解及陸域內古代海水之賦存水體所影響。然而,以灌溉水質標準評定,有一定比例的地下水井之水質已不適合做為灌溉用途。爰此,研究區域在地下水資源的減抽政策上應該更有效率的執行,得以保育地下水資源。
英文摘要 The Penghu Islands experience substantial differences in rainfall under different climates and high water evaporation. The storage of water resources is thus complicated, and groundwater has long played a crucial role in the supply of water resources. However, because groundwater resources have been continuously overdeveloped, some regions are undergoing seawater intrusion and groundwater salinization, which affects the islands’ overall water resource usage. In coastal areas, the seawater intrusion of groundwater is a widespread hydrogeological disaster and generally occurs when the overpumping of groundwater causes the lowering of groundwater levels, leading to the horizontal or vertical intrusion of seawater and consequent changes in groundwater quality (Bark et al., 1998; Barlow and Reichard, 2010). The most direct cause of the salinization of coastal aquifers is probably seawater intrusion, followed by a series of complex hydrogeological and hydrological processes that affect groundwater quality through different processes, such as the mixing of seawater and groundwater levels, water–rock interaction, and artificial contaminants (Vengosh et al., 2005).
Therefore, to assess the seawater intrusion and groundwater salinization conditions in Penghu, Taiwan, and examine the causes and mechanisms of groundwater salinization, a literature review on hydrology, the Earth’s surface, and hydrogeology was conducted to form a basic understanding of Penghu’s groundwater environment. Subsequently, 45 sources of groundwater under different climates were sampled and water quality analysis was performed. The findings of this study indicated that in addition to seawater intrusion, the causes of groundwater salinization in Penghu also include the effects of soluble mineral dissolution in soil and ancient seawater stored in the land.
Key words: hydrochemical、Penghu、seawater intrusion、Underlying Cause behind Groundwater Salinization
論文目次 目 錄
中文摘要 I
Extended Abstract II
誌謝 VIII
第一章 緒論 1
1.1研究動機及目的 1
1.2文獻回顧 3
1.3研究方法及流程 7
1.4本文架構 8
第二章 研究區域 9
2.1地理環境概述 9
2.2氣候條件概述 10
2.3地質條件概述 12
2.4地下水系統概況 14
2.4.1地下含水層水文地質 14
2.4.2地下水位資料 14
2.4.3地下水水質概況 18
2.4.4地下水管制區 29
2.5降雨對地下水位與氯鹽濃度之影響 31
2.6水資源供需概況 35
第三章 澎湖地區地下水質調查分析 37
3.1地下水井區位與採樣頻率 37
3.2採樣與分析項目規劃 39
3.3採樣方法及流程 41
3.4地下水質與地質之相關性 44
3.4.1氧化還原反應 44
3.4.2離子交換反應 45
3.5水化學特性研析方法 47
3.5.1導電度 47
3.5.2氯鹽 47
3.5.3總溶解固體物 47
3.5.4離子組合比值分析 48
3.5.5派博水質圖 51
3.5.6鈉吸著率(Sodium Adsorption Ratio,簡稱SAR) 53
3.5.7殘餘碳酸鈉(Residual Sodium Carbonate,簡稱RSC) 53
3.6地下水水質分析結果 55
3.6.1第一期程地下水質採樣(105年4月28日) 55
3.6.2第二期程地下水質採樣(105年6月24日) 69
3.6.3第三期程地下水質採樣(105年9月23日) 83
3.6.4環保署地下水監測井 97
第四章 綜合分析 113
4.1研究區域枯豐水期水質特性分析 113
4.2研究區域淺層與深層含水層水質特性分析 116
4.3研究區域水井鹽化成因分析 118
第五章 結論與建議 120
5.1結論 120
5.2未來研究建議 121
參考文獻 123


參考文獻 1.吳朝玉(2009)(譯),「地下水開發手冊」,北京:中國水利水電出版社,p.399-438。(譯自Roscoe Moss(1990))。
2.彭宗仁、劉滄棽、陳鎮東(2001),「蘭陽平原地下水之水化學演化研究」,台灣農業化學與食品科學,39(6),pp.423-436。
3.彭宗仁、謝永旭、劉滄棽(2004),「彰化地區地下水之水化學特徵」,土壤與環境,7(1),pp.19-40。
4.彭宗仁、劉滄棽、郭鴻裕(2000),「屏東沿海地區地下水水質之鹽化趨勢」,土壤與環境,3(4),pp.19-40。
5.江漢全(1994),「應用Na/Cl比追蹤淺層地下水中之鹽分污染」,農業工程學報,40(2),pp.69-77。
6.肖振華(1997),「灌溉水質對土壤化學特徵和作物生長的影響」,土壤學報,34(3),pp.272-283。
7.廖仲威(2014),「台灣中段山區地下水水質特性與地質間之關係研析」,國立宜蘭大學環境工程研究所碩士論文。
8.江漢全(1994),「蘭陽平原地下水之主要化學成分」,農業工程學報,40(4),pp.85-95。
9.江漢全(1992),「氯離子在兩種不同性質土壤中之互溶性流動取代」,地下水調查分析與保育管理論文集,pp.325-335。
10.經濟部水利署(2003),「地下水觀測站井建置及已完成觀測井井體維護計畫2/2」。
11.經濟部水利署水利規劃試驗所(2005),「澎湖地區供水改善規劃」。
12.經濟部水利署水利規劃試驗所(2006),「澎湖地區地下水資源規劃調查」。
13.經濟部水利署水利規劃試驗所(2007),「澎湖地區地下水資源規劃調查總報告」。
14.經濟部水利署水利規劃試驗所(2010),「離島地區中長程供水檢討規劃」。
15.經濟部水利署水利規劃試驗所(2012),「澎湖地區地下水整體保育策略規劃」。
16.Araguas Araguas, L.J., (2003), Identification of the mechanisms and origin of salinization of groundwater in coastal aquifers by isotope techniques. In: IGME (Ed.), Tecnologia de la intrusion de agua de mar en acuíferos costeros: paises mediterráneos, Alicante, Spain, pp. 365–371.
17.Akoteyon,I.S., (2013), Characterizayion of groundwater hydrochemistry and quality assessment in ETI–OSA, LAGOS-NIGERIA, Ethiopian Journal of Environmental Studies and Management, 6(2), pp.201-214.
18.Bear, J., Cheng, A.H.-D., Sorek, S., Ouazar, D.H.I., (1999), Seawater Intrusion in Coastal Aquifers-Concepts, Methods, and Practices. Kluwer Academic Publishers, Dordrecht/Boston/London.
19.Barker, A.P., Newton, R.J., Bottrell, S.H., (1998), Processe saffecting groundwater chemistry in a zone of saline intrusion into an urban sandstone aquifer, Applied Geochemistry, 13(6), pp.735-749.
20.Barlow, P.M., Reichard, E.G., (2010), Saltwater intrusion in coastal regions of North America, Hydrogeology Journal, 18(1), pp.247-260.
21.Chapelle, F.H., (1983), Groundwater geochemistry and calcite cementation of the Aquia aquifer in southern Maryland, Water Resources Research, 19(2), pp.545-558.
22.Das, B.K., Kaur, P., (2001), Major ion chemistry of Renuka Lake and weathering processes,Sirmaur District, Himachal Pradesh, India, Environmental Geology, 40(7), pp.908-917.
23.Demetriades, A., (2010), General ground water geochemistry of Hellas using bottled water samples, J.Geochemical Exploration, 107(3), pp.283-298.
24.Datta, P.S.,Tyagi, S.K., (1996), Major ion chemistry of groundwater in Delhi area: Chemical weathering processes and groundwater regime, Journal of the Geological Society of India, 47(2), pp.179-188.
25.De Montety, V., Radakovitch, O., Vallet-Coulomb, C., Blavoux, B., Hermitte, D., Valles, V., (2008), Origin of groundwater salinity and hydrogeochemical processes in aconfined coastal aquifer: Case of the Rhône delta (Southern France).Applied Geochemistry, 23(8), pp.2337-2349.
26.Ghabayen, S.M.S., McKee, M., Kemblowski, M.,( 2006), Ionic and isotopic ratios for identification of salinity sources and missing data in the Gaza aquifer, J. Hydrol, 318(1-4), pp.360–373.
27.Gomis-Yagues, V., N.Boluda-Botella, and F.Ruze-Bevia., (2000), Gypsum precipitation/dissolution as an explanation of the decrease of sulphate concentration during seawater intrusion, Journal of Hydrology, 228(1-2), pp. 48-55.
28.Hafe, Z.B., (1998), Hydrochemical evaluation of the coastal Quaternary aquifer east of Tripoli, Libya, Journal of African Earth Sciences, 26(4), pp.643-648.
29.Hem, J.D., (1989), Study and interpretation of the chemical characteristics of natural water, USGS water supply paper 2254, 3rd edition.
30.Jasbir Kaur Taak., & Singh, K.P., (2014), Hydrochemical Investigations of Sukhna Wetland and Adjoining Groundwater Regime, International Journal of Environmental Science and Toxicology Research, 2(5), pp.108-118.
31.Jorgensen, N.O., (2002), Origin of shallow saline groundwater on the Island of Laso, Denmark,chem.Geol., 184(3), 359-370.
32.Jones, B.F., Vengosh, A., Rosenthal, E., Yechieli, Y., (1999), Geochemical investigations. In: Bear, J., Cheng, A.H.-D., Sorek, S., Ouazar, D., Herrera, I. (Eds.), Seawater Intrusion in Coastal Aquifers. Kluwer Academic Publishers., Dordrecht/Boston/London, pp. 1–71.
33.Melanie L. Clark and Jon P. Mason, (2006), Water-quality characteristics, including sodium-adsorption ratios, for four sites in the Powder River drainage basin, Wyoming and Montana, water years 2001-2004.
34.Melloul, A., Collin, M., (1991), Water quality factor identification by the “Principal Components” statistical method, Wat.Sci.Tech, 24(11), pp.41-50.
35.Meybeck, M., (1987), Global chemical weathering from surficial rocks estimated from river dissolved loads, Am J Sci 287,pp.401–428.
36.Majid Rashidi, & Mohsen Seilsepour, (2011), Prediction of Soil Sodium Adsorption Ratio Based on Soil Electrical Conductivity, Middle-East Journal of Scientific Research, 8 (2), pp.379-383.
37.Magaritz, M., Nadler, A., Koyumdjisky, H., & Dan, J., (1981), The ues of Na/Cl ration to trace solute sources in a semiarid zone, Water Resources Research, 17(3), pp.602-608.
38.Kumar, M., Rao, M. S., Deka, J. P., Ramanathan, A. L., & Kumar, B., (2015), Integrated hydrogeochemical, isotopic and geomorphological depiction of the groundwater salinization in the aquifer system of Delhi, India, Journal of Asian Earth Sciences, 111, pp.936-947.
39.Peter H.Gleick(1993),Water in Crisis:A Guide tot he World,s Fresh Water Resources(3rd Ed.), New York: Oxford University Press.
40.Risacher, F., Alonso, H. & Salazar, C., (2002), Hydrochemistry of two adjacent acid saline lakes in the Andes of northern Chile, Chemical Geology, 187(1-2), pp.39-57.
41.Shimaa M. Ghoraba1 & A.D. Khan, (2013), HYDROCHEMISTRY AND GROUNDWATER QUALITY ASSESSMENT IN BALOCHISTAN PROVINCE, PAKISTAN, IJRRAS, 17 (2), pp.185-199.
42.Snoeyink V. L. & Jenkins D., (1982) Water Chemistry John Wiley & Sons, Inc, New York, U.S.A,pp.6.
43.Srinivasamoorthy, K., Gopinath, M., Chidambaram, S., Vasanthavigar, M., Sarma, V.S., (2014), Hydrochemical characterization and quality appraisal of groundwater from Pungar sub basin, Tamilnadu, India, J.King Saud Univ.Sci, 26(1),pp.37-52.
44.Sarin, M. M, Krishnaswamy, S., Dilli, K., Somayajulu, B. L. K. & Moore, W. S., (1989), Major ion chemistry of Ganga-Brahmaputra river system: weathering processes and fluxes of the Bay of Bengal, Geochimica et Cosmochimica Acta, 53(5), pp.997-1009.
45.Saliha Najib, Ahmed Fadili, Khalid Mehdi, Joelle Riss, & Abdelhadi Makan, (2017), Contribution of hydrochemical and geoelectrical approaches to investigate salinization process and seawater intrusion in the coastal aquifers of Chaouia, Morocco, Journal of Contaminant Hydrology, 198,pp24-36.
46.Thimonier, A., (2008), Seasonality of the Na/Cl ratio in precipitation and implications of canopy leaching in validation chemical analyses of throughfall samples, Atmopsheric Environment, 42, pp.906-917.
47.Thomas, G.W. & Seoboda, A.R., (1970), Anion exclusion effects on chloride movement in soils, Soil Sci, 110(3), pp.163-167.
48.Todd, D. K., (1989), Sources of saline intrusion in the 400-foot aquifer, Castroville area, California. Report for Monterey Country Flood Control and Water Conservation District, Salinas, California, pp.41.
49.Vengosh, A., Kloppmann, W., Marei, A., Livshitz, Y., Gutierrez, A., Banna, M., Guerrot, C., Pankratov, I., Raanan, H., (2005), Sources of salinity and boron in the Gaza strip: Natural contaminant flow in the southern Mediterranean coastal aquifer, Water Resources Research , 41(1), W01013.
50.Vengosh, A., Gill, J., Reyes, A., & Thoresberg, K., (1997), A multi-isotope investiga6tion of the origin of groundwater salinity in Salinas valley, California. American Geophysical Union, San Francisco, California.
51.Werner, A.D., Simmons, C.T., (2009), Impact of Sea-Level Rise on Sea Water Intrusion in Coastal Aquifers, Ground Water, 47(2), pp.197-204.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw