進階搜尋


下載電子全文  
系統識別號 U0026-3108201720382700
論文名稱(中文) 使用探空氣球量測對流雲中的電荷垂直分布
論文名稱(英文) The Vertical Charge Distribution in Convective Cloud Measured by Sounding Balloons
校院名稱 成功大學
系所名稱(中) 太空與電漿科學研究所
系所名稱(英) Institute of Space and Plasma Sciences
學年度 105
學期 2
出版年 106
研究生(中文) 邱泰瑋
研究生(英文) Tai-Wei Ciou
學號 LA6041022
學位類別 碩士
語文別 中文
論文頁數 80頁
口試委員 指導教授-陳炳志
口試委員-楊毅
口試委員-陳佳宏
中文關鍵字 大氣垂直電場  電場量測儀  對流雲  垂直電荷分布 
英文關鍵字 Vertical Electric Field  Convective Cloud  Charge Distribution 
學科別分類
中文摘要 現今為學界接受的對流雲常見結構為三層電荷分布,雲間電荷形成的機制是由冰晶與霰粒之間的碰撞所導致,受限於飛行載具與量測技術,目前對於對流雲內的電場與電荷現地量測資料較為缺乏。
於本論文中,使用探空氣球攜帶電場量測儀,量測雷雨雲系統的電場,以了解雲間電荷的結構與分布情形。為了進入雷雨雲系統中進行量測,將已有的電場量測儀進行電路與結構的改良,並強化各系統間的連接,以提升製作、測試、組裝之效率,使其適用於強對流系統的量測。對於校正設施也有新的改進,使得校正時可較之前準確與安全。另外,在分析時使模型擬合的方法(簡單圓柱對稱模型),可推算出飛行經過雲層時電荷盤的厚度、半徑與電荷量。
本論文中報告2016、2017的6月份梅雨季節四次飛行實驗的結果。2016/06/04實驗中首次於夜間量測,其大氣垂直電場不如午間有較大的電場產生,可作為後三次飛入對流的實驗對照組。2016/06/05實驗中量測到雲間的正負電荷的轉換。實驗結果顯示對流雲在發展初期的電荷主要電荷層內的電荷分布均為正、負薄電荷層交錯,且每層總電荷為正。2017/06/02的午間與夜間實驗中,進入到強對流系統,發生較為特別情形,如雲間放電、下降氣流、雨滴帶電等情形,並觀測到其雨滴帶電機制複雜與雲層的帶電方式不同。
英文摘要 Our current understanding of the charge distribution in thunderclouds is described by a simple tripolar model but it cannot well cover the variety of the charge structure drive by the complicated dynamic processes. Therefore, the in-situ measurements of the electric field in and above thundercloud become very challenging but essential. To explore the charge distribution in thundercloud, a sounding balloon carried with an electric field meter was used to measure the strength of the vertical electric field. In this work, the circuit of electric field meter was redesigned including the enhancement of the structure, the improvement of the connection to amplify the dynamic range of the electric field measurement and to promote assembly efficiency. The electric field calibration cage, which is also redesigned to improve its accuracy and safety for the calibration work, and external AC noise was also reduced by a better shielding design. In addition, a simple symmetrical cylinder model developed by Chuang [2015] was applied to evaluate the altitude, depth, radius, and charge amount of the charge layers, and experiment results can help us reveal the detail charge distribution in thundercloud. Four flight experiments have been done in June 2016 and 2017, the rainy season in Taiwan, by joining a campaign organized by TTFRI. Three of the flight successfully flew into the convective cloud. In the flight experiment on 2016/06/05, four major layers of electric charge were identified. Each layer consists of multiple thin charge layers with different electric polarity, and commonly thin negative charge layer always on the top. Furthermore, the polarities of the total charge in these layers were all recognized as positive. The second and third flight experiment on 2017/06/02 experienced a strong electric field, greater than 600V/m, and even damaged the electric field meter and aviation electronics. The experiment results also indicated that the electrification process of raindrop is complicated, and need more flight experiments to explore.
論文目次 摘要 I
Extended Abstract II
致謝 VI
目錄 VII
表目錄 X
圖目錄 XI
第一章 簡介 1
1.1全球大域電路 1
1.1.1大氣背景電場 2
1.1.2晴天電場 4
1.1.3擾動電場 5
1.2 雷雨雲系統 5
1.2.1雷雨雲的雲層結構與電荷分布 5
1.2.2閃電 7
1.3研究動機 9
1.4論文架構 10
第二章 電場量測儀與航電系統介紹 11
2.1發展簡介 11
2.2 電場量測儀系統設計 12
2.2.1電路系統 13
2.2.2整合載板 18
2.2.3電力系統 20
2.2.4機械結構 22
2.3儀器校正 27
2.4飛行系統 32
2.4.1飛行載具 32
2.4.2航電系統 33
2.4.3飛行前的路徑預測與鋒面的觀察 36
2.5地面接收系統 37
2.5.1地面站設備 37
2.5.2地面作業流程 39
第三章 飛行實驗結果與分析 41
3.1 電荷分布計算 42
3.1.1高斯定律推算電荷密度 43
3.1.2簡單軸對稱模型擬合推算電荷密度 43
3.1.3電荷分布計算方法比較 45
3.2 2016/06/04飛行實驗 47
3.2.1飛行實驗概述 47
3.2.2 溫度與濕度資料 50
3.2.3電場資料分析與討論 51
3.3 2016/06/05飛行實驗 52
3.3.1飛行實驗概述 52
3.3.2溫度與濕度資料 55
3.3.3電場資料分析與討論 56
3.4 2017/06/02午間飛行實驗 62
3.4.1飛行實驗概述 62
3.4.2溫度與濕度資料 65
3.4.3電場資料分析與討論 66
3.5 2017/06/02夜間飛行實驗 68
3.5.1飛行實驗概述 68
3.5.2溫度與濕度資料 71
3.5.3電場資料分析與討論 72
3.6總結 73
第四章 飛行結論與未來展望 74
4.1結論 74
4.2未來展望 75
參考文獻 76
參考文獻 Fukunishi, H., Takahashi, Y., Kubota, M., Sakanoi, K., Inan, U. S., & Lyons, W. A. (1996), Elves: Lightning‐induced transient luminous events in the lower ionosphere. Geophysical Research Letters, 23(16), 2157-2160.

Gish, O. H. (1951), Universal aspects of atmospheric electricity. In Compendium of meteorology (pp. 101-119). American Meteorological Society.

Gish, O. H. (1944), Evaluation and interpretation of the columnar resistance of the atmosphere. Journal of Geophysical Research, 49(3), 159-168.

Harrison, R. G. (2004), The global atmospheric electrical circuit and climate. Surveys in Geophysics, 25(5-6), 441-484.

Hatakeyama, H. et al. (1958), A radiosonde instrument for the measurement of atmospheric electricity and its flight results. In: Smith LG (ed) Recent advances in atmospheric electricity, Pergamon, New York.

Hays, P. B., & Roble, R. G. (1979), A quasi‐static model of global atmospheric electricity, 1. The lower atmosphere. Journal of Geophysical Research: Space Physics, 84(A7), 3291-3305.

Holzworth, R. H., K.W. Norville, P. M. Kintner, and S.P. Powell (1986), Stratospheric conductivity variations over thunderstorms, J. Geophys. Res., 91, 13257-13263.
Kasemir, H. W. (1976), Theoretical problems of the global atmospheric electric circuit. In Electrical Processes in Atmospheres (pp. 423-439). Steinkopff.

Krehbiel, P. R. (1986), The electrical structure of thunderstorms in the earth’s electrical environment, eds. E. P. Krider and P. G. Roble, pp. 90, Washington, DC, National Academy Press.

Krehbiel, P. R., J. A. Riousset, V. P. Pasko, R. J. Thomas, W. Rison, M. A.Stanley, and H. E. Edens (2008), Upward electrical discharges from thunderstorms, Nature Geoscience, 1(4), 233– 237, doi:10.1038/ngeo162.

Maddox, R. A. (1980), Meoscale convective complexes. Bulletin of the American Meteorological Society, 61(11), 1374-1387.

Marshall, T. C., Stolzenburg, M., Rust, W. D., Williams, E. R., & Boldi, R. (2001), Positive charge in the stratiform cloud of a mesoscale convective system. Journal of Geophysical Research: Atmospheres, 106(D1), 1157-1163.

Ogawa, T. (1985), Fair‐weather electricity. Journal of Geophysical Research: Atmospheres, 90(D4), 5951-5960.

Pasko, V. P., U.S. Inan, and T.F. Bell (1996), Sprites as luminous columns of ionization produced by quasi-electrostatic thundercloud fields., Geophys. Res. Lett., 23, 649.


Rakov, V. A., and M. A. Uman (2003), Lightning :physics and Effect, 850 pp., Cambridge University Press, Cambridge U.K.

Roble, R. G. (1991), On modeling component processes in the Earth's global electric circuit. Journal of Atmospheric and Terrestrial Physics, 53(9), 831-847.

Rosen, J. M., Hofmann, D. J., Gringel, W., Berlinski, J., Michnowski, S., Morita, Y., ... & Olson, D. (1982), Results of an international workshop on atmospheric electrical measurements. Journal of Geophysical Research: Oceans, 87(C2), 1219-1224.

Saba, M. M. F., Pinto, O., Pinto, I. R. C. A., & Mendes, O. (2000), Stratospheric balloon measurements of electric fields associated with thunderstorms and lightning in Brazil. Journal of Geophysical Research: Atmospheres, 105(D14), 18091-18097.

Sentman, D.D., E.M. Wescott, D.L. Osborne, D.L. Hampton, and M.J. Heavner (1995), Preliminary results from the Sprites94 Aircraft Campaign: 1.Red sprites, Geophys. Res. Lett., 22(10), 1205-1208, doi:10.1029/95GL00583.

Singh, D. K., Singh, R. P., & Kamra, A. K. (2004), The electrical environment of the Earth’s atmosphere: A review. Space Science Reviews, 113(3-4), 375-408.

Siingh, D., Singh, R. P., Kamra, A. K., Gupta, P. N., Singh, R., Gopalakrishnan, V., & Singh, A. K. (2005), Review of electromagnetic coupling between the Earth's atmosphere and the space environment. Journal of atmospheric and solar-terrestrial physics, 67(6), 637-658.
Siingh, D., Gopalakrishnan, V., Singh, R. P., Kamra, A. K., Singh, S., Pant, V., ... & Singh, A. K. (2007), The atmospheric global electric circuit: an overview. Atmospheric Research, 84(2), 91-110.

Simpson, G. C. (1909), On the electricity of rain and its origin in thunderstorms. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 209, 379-413.

Simpson, G., & Scrase, F. J. (1937), The distribution of electricity in thunderclouds. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 309-352.

Stolzenburg, M., Rust, W. D., Smull, B. F., & Marshall, T. C. (1998), Electrical structure in thunderstorm convective regions: 1. Mesoscale convective systems. Journal of Geophysical Research: Atmospheres, 103(D12), 14059-14078.

Stolzenburg, M., & Marshall, T. C. (2009), Electric field and charge structure in lightning-producing clouds. na.

Thomas, J. N., B. H. Barnum, E. Lay, R. H. Holzworth, M. Cho, and M. C. Kelley (2008), Lightning-driven electric fields measured in the lower ionosphere: implications for transient luminous events. J. Geophys. Res., 113, A12306, doi: 10.1029/2008JA013567.

Tuma, J. (1899), Beitra¨ge zur Kenntniss der atmospha¨rischen Elektricita¨t III. Sitz. Ak. Wiss, Wien.
Wescott E.M., D.D. Sentman, D.L. Osborne, D.L. Hampton, and M.J. Heavner (1995), Preliminary results from the Sprites94 Aircraft Campaign: Blue Jets., Geophys. Res. Lett., 22(10), 1209-1212.

Wilson, C. T. R. (1916), On some determinations of the sign and magnitude of electric discharges in lightning flashes. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 92(644), 555-574.

Winn, W. P., Moore, C. B., Holmes, C. R., & Byerley, L. G. (1978), Thunderstorm on July 16, 1975, over Langmuir Laboratory: A case study. Journal of Geophysical Research: Oceans, 83(C6), 3079-3092.

孫楊軼(2009),「福爾摩沙衛星一號與全球定位系統地面接收機觀測太陽活動極大期低緯電離層不規則體」,國立中央大學太空科學研究所碩士論文。

邱政修(2012),「使用探空氣球進行大氣直流電場量測」,國立成功大學太空天文與電漿科學研究所碩士論文。

莊嘉文(2014),「發展電場量測儀器進行地表大氣電場量測」,國立成功大學太空與電漿科學研究所碩士論文。

莊承翰(2015),「閃電電場模擬與人工處發閃電的可行性研究」,國立成功大學太空與電漿科學研究所碩士論文。

溫少群(2015),「平流層以下之大氣電場量測」,國立成功大學物理研究所碩士論文。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw