進階搜尋


下載電子全文  
系統識別號 U0026-3108201719571200
論文名稱(中文) 品質感知賦能考量之互操作地理資訊系統設計
論文名稱(英文) Enabling quality-aware consideration for interoperable GIS design
校院名稱 成功大學
系所名稱(中) 測量及空間資訊學系
系所名稱(英) Department of Geomatics
學年度 105
學期 2
出版年 106
研究生(中文) 蘇郁婷
研究生(英文) Yu-Ting Su
學號 p66044049
學位類別 碩士
語文別 英文
論文頁數 152頁
口試委員 指導教授-洪榮宏
口試委員-蔡博文
口試委員-江渾欽
中文關鍵字 不確定性  使用者介面設計  視覺化  詮釋資料  品質感知地理資訊系統  決策 
英文關鍵字 Uncertainty  Interface design  Visualization  Metadata  Quality-Aware GIS  decision making 
學科別分類
中文摘要 隨著網際網路及開放地理資訊技術快速發展,地理資訊傳播便利,促使空間資料之使用趨於普及,使用者可藉由各式可連線上網之設備於網路各處取得、檢視、處理空間資料。在此景況下,空間資料之使用者已不再局限於專業使用者,對於空間資料特性及其操作工具缺乏相關知識的使用者日益增多;又資料之詮釋資料記錄項目繁多,即便使用者有心,亦難以正確解讀取得之對應的詮釋資料以評估資料適用性。如此將導致使用者在享受便利的同時,可能使用不合適之資料於特定應用,且缺乏空間資料品質的考量將使決策分析建構於帶有高不確定性風險之參考來源之上。因此,本研究認為可自動化感知資料品質及額外資訊之機制,以提供使用者安全的操作環境是未來GIS發展趨勢之一。

此一機制即稱為「品質感知地理資訊系統」(Quality-aware GIS),其特色為將空間資料之品質納入系統運作之中,以提供額外資訊及警示等方式令使用者隨時處在對於空間資料品質具有認知的情況下,如此將使決策分析更加精確。本研究將分別從操作面及視覺展示面探討品質感知地理資訊系統之設計。在操作面探討方面,為分析歸納出對於確保各個操作之成果為使用者預期(理想情況)必須考量之額外資訊項目,以嵌入特定模組(例如檢查特定資訊是否存在)之方式使操作具備品質感知的能力,最終將得到帶有品質考量之操作結果及其詮釋資料文件,以促使網路整體運作環境趨於「有資料必有詮釋資料」之理想。在品質視覺化方面,本研究歸納出四種視覺化技術已用於資料品質及額外資訊之展示,不同特性之資訊有其較合適之視覺化策略,宗旨為以易懂之方式提供使用者使用資料之額外資訊。

在本研究中,我們針對十種常見之GIS操作從操作及品質視覺化兩方面探討,最後歸結出發展品質感知GIS之策略。在實作方面,本研究採用符合ISO詮釋資料標準及以機器可讀XML格式撰寫及流通之詮釋資料文件,結合GeoServer、Geonetwork及 OpenLayers 3等技術發展品質感知地理資訊系統。在成效方面,以實作前述探討之十種操作中的六種以驗證本研究提出之設計策略是可行,並且確實自動提供相關的額外資訊以供使用者參考。未來,隨著資料流通技術及GIS之實用性之提昇,在此趨勢下,大多數的空間資料將被對於空間資料及其操作工具不慎瞭解之使用者取得、應用,但可靠之應用僅存在於納入資料之額外資訊考量之平台。
英文摘要 The fast growth of internet-based sharing mechanism and OpenGIS technology enable users to easily access geospatial data in open formats and develop various applications on platforms, ranging from personal computers to internet-based mechanism. With its superior capabilities to integrate data from different domains, GIS has been widely and extensively used by millions of users from a variety of domains. Furthermore, the majority of increasing users in the coming years are expected to be naive users without prior knowledge about geospatial data and GIS operations. While users’ interaction to the GIS becomes easier with friendly interface, the lack of knowledge about the heterogeneous nature of distributed data and the process on geospatial data handling becomes a major source of risks for GIS. We argue the next generation of GIS-based environment, regardless internet-based or not, must have built-in knowledge to automatically and correctly assess the fitness of data use and present the analyzed results to users in an intuitive and meaning way.

“Quality-Aware” is not a new concept in GIS research. The idea of Quality-Aware GIS was proposed to take data quality consideration into GIS design by automatically providing auxiliary information for users’ decision reference. By arguing it is impractical to expect users to build a correct understanding towards the selected data purely based on current mechanism(e.g., manually inspect the metadata), we propose a quality-aware GIS mechanism in this thesis for “automatically” analyzing and prompting visual guidance about the quality of the operation outcomes to aid users’ decision making. To develop a quality-aware GIS, we identify two major issues, GIS operations and visualization of outcomes. From the GIS operation perspective, the workflows of GIS operations should be examined and modified by taking the impacts of data quality into account, such that a correct evaluation about the accuracy and validity of the operation outcomes can be presented. From the perspective of outcome visualization, we proposed to use various visual aids, e.g., virtual layer, informative window, symbol transformation and augmented TOC, to address the challenges of visually explaining data quality of operation outcomes. These visual aids are fully assimilated into the GIS interface design, such that users can easily manipulate the tools or components available in the interface to “visualize” the differences of selected datasets. In a nutshell, the quality-aware GIS can thus not only present the operation outcomes of geospatial data, but also convey quality information for understanding acquired geospatial data more comprehensively.

In the research, we choose ten common GIS operations, namely, map overlay, geometric operation, nearest neighbor, query (spatial/attribute), measurement (distance/area), voronoi diagram, join (spatial/attribute), statistics, thematic map and routing, to examine their quality-aware strategies. We then summarize useful guidance about developing quality-aware GIS from GIS operation and visualization perspectives. Six of these operations, which are map overlay, query (i.e. select by region), nearest neighbor, measurement (i.e. line measurement), join (i.e. spatial join) and statistics (i.e. mode), are implemented in the prototype system for testing the feasibility of the proposed approach. As a proof-of-concept, the test results demonstrate that the proposed approach can successfully convey reliable and valid operation outcomes and additional information about acquired data via user-friendly interface to help users gain understanding about acquired data comprehensively and make more reliable decisions. GIS has been long seen as a powerful integration tool, but its achievements would be highly restricted if it fails to provide a friendly and correct working platform. This research contributes to improve the quality of decision making, which is the most demanded features for the naïve GIS users.
論文目次 TABLE OF CONTENTS
摘要.....................................................I
Abstract...............................................III
致謝.....................................................V
TABLE OF CONTENTS......................................VII
LIST OF TABLES..........................................IX
LIST OF FIGURES..........................................X
Chapter 1 Introduction...................................1
1.1 Background.......................................1
1.1.1 GIS evolution....................................1
1.1.2 Standardization of geospatial information........3
1.1.3 Evolution of spatial data quality................6
1.2 Research scope and major strategy................8
1.3 Organization of the thesis......................10
Chapter 2 Literature Review.............................12
2.1 Uncertainty.....................................12
2.1.1 Data quality component..........................12
2.1.2 Model of uncertainty............................15
2.1.3 Standards of data quality.......................17
2.1.4 Error propagation...............................19
2.2 Visualization...................................20
2.3 Quality-aware GIS...............................23
Chapter 3 Quality-aware GIS Operations..................28
3.1 Standardized metadata framework.................29
3.1.1 Standardized metadata framework from the map illustration perspective................................30
3.1.2 Standardized metadata framework from the data quality perspective.....................................32
3.1.3 Introduction of ISO data quality measures.......33
3.2 Modified algorithm of GIS operation.............36
3.2.1 Additional operation design considerations......38
3.2.2 Common data quality module......................55
3.2.2.1 Data completeness check module..................58
3.2.2.2 Positional accuracy check module and spatial relationship with the positional uncertainty module.....59
3.2.2.3 Thematic accuracy check module and quantitative thematic accuracy module................................62
3.2.2.4 Topological consistency check module............65
3.2.2.5 Temporal information check module...............65
3.2.2.6 Surveyed area module............................66
3.2.2.7 Valid extent constraint check module............67
3.2.3 Assimilating the data quality module into each GIS operation...............................................68
3.2.4 Design of metadata for the operation outcome....76
3.2.4.1 Data quality information........................77
3.2.4.1.1 Data quality report...........................77
3.2.4.2 Surveyed area, temporal extent, and additional information.............................................79
Chapter 4 Visualization approach........................81
4.1 VISA............................................81
4.3 Informative window..............................87
4.4 Symbol transformation...........................91
4.5 Augmented TOC...................................94
4.6 User interface design...........................96
Chapter 5 Implementation................................99
5.1 Metadata implementation.........................99
5.2 Test data......................................101
5.3 System architecture............................104
5.4 Scenario analysis..............................109
5.4.1 Map overlay....................................109
5.4.2 Query..........................................114
5.4.3 Nearest neighbor...............................120
5.4.4 Measurement....................................125
5.4.5 Join...........................................127
5.4.6 Statistics.....................................129
Chapter 6 Conclusion and future works..................132
6.1 Conclusion.....................................132
6.2 Future works...................................134
Chapter 7 Reference....................................136
Appendix A: Workflow of ten GIS operations.............143
參考文獻 Aalders, H. and Morrison, J., 1998. “Spatial Data Quality for GIS”, in Geographic Information Research: Trans-Atlantic Perspectives, Craglia M. and Onsrud H. (eds), , London/Bristol, Taylor & Francis, pp.463–75.
Abela, 2006. Choosing a good chart on Extremely effective communication of complex information blog. from http://extremepresentation.typepad.com/blog/2006/09/choosing_a_good.html
Arbia, G., Griffith, D. and Haining, R., 1998. Error propagation modelling in raster GIS: overlay operations. International Journal of Geographical Information Science, 12(2), pp.145-167.
ANZLIC the Spatial Information Council, 2007. ANZLIC Metadata Profile: An Australian/New Zealand Profile of AS/NZS ISO 19115:2005, Geographic Information Metadata Draft Version 1.1.
Bartha, G., & Kocsis, S., 2011. Standardization of geographic data: The european inspire directive. European Journal of Geography, 2(2), 79-89.
Bédard, Y. and Vallière, D., 1995. Qualité des données à référence spatiale dans un contexte gouvernemental. Université Laval, Québec, 53.
Berry, B. J., 1964. Approaches to regional analysis: a synthesis. Annals of the Association of American Geographers, 54(1), pp.2-11.
Berry, J. K., 2007. Map analysis: understanding spatial patterns and relationships. San Francisco, CA: GeoTec Media. from http://www.innovativegis.com/basis/mapanalysis/Topic27/Topic27.htm
Bonneau, G. P., Hege, H. C., Johnson, C. R., Oliveira, M. M., Potter, K., Rheingans, P. and Schultz, T., 2014. Overview and state-of-the-art of uncertainty visualization. In Scientific Visualization. Springer London. pp.3-27.
Brassel K, Bucher F, Stephan E-M, Vckovski A 1995 Completeness. In Guptill S C, Morrison J L (eds) Elements of spatial data quality. Oxford, Elsevier Science: 81–108.
Buttenfield, B. P., 1993. Representing data quality. Cartographica: The International Journal for Geographic Information and Geovisualization, 30(2-3), pp.1-7.
Chrisman N. R., 2006. Charting the Unknown – How Computer Mapping at Harvard Became GIS. Redlands, CA, ESRI Press
Chrisman N. R., 2009. A difference that makes a difference – Reflections on 30+ years in the field of Spatial Data Quality. Unpublished keynote presentation at the Sixth International Symposium on Spatial Data Quality (ISSDQ’09), St. John’s, Canada. from http://www.mun.ca/issdq2009/ISSDQ2009_Chrisman_Keynote.pdf
Collins F.C. and Smith J.L., 1994, May 16–20, 1994. Taxonomy for error in GIS. Proceedings of the International Symposium on the Spatial Accuracy of Natural Resource Data Bases, Williamsburg, USA, ASPRS, pp.1-7.
Devillers, R., Bédard, Y. and Jeansoulin, R., 2005. Multidimensional management of geospatial data quality information for its dynamic use within GIS. Photogrammetric Engineering & Remote Sensing, 71(2), pp.205-215.
Devillers, R., et al., 2007, January 2007. How to improve geospatial data usability: from metadata to quality-aware GIS community. Paper presented at A AGILE Pre-Conference Workshop.
Devillers, R., and Jeansoulin, R., 2006. Fundamentals of spatial data quality. ISTE Publishing Company. pp.312.
Devillers, R., Stein, A., Bédard, Y., Chrisman, N., Fisher, P. and Shi, W., 2010. Thirty years of research on spatial data quality: achievements, failures, and opportunities. Transactions in GIS, 14(4), pp.387-400.
Devillers, R. and Zargar, A., 2009. Towards quality-aware GIS: Operation-based retrieval of spatial data quality information. Report Spatial Knowledge and Information (SKI) Conference, Fernie (BC), Canada.
Duckham, M., 2002. A User‐Oriented Perspective of Error‐sensitive GIS Development. Transactions in GIS, 6(2), pp.179-193.
Duckham, M., and McCreadie, J. E., 2002. Error-aware GIS development. Spatial Data Quality, pp.63-75.
Federal Geographic Data Committee., 1998. FGDC-STD-001-1998. Content standard for digital geospatial metadata (revised June 1998). Federal Geographic Data Committee. Washington, DC.
Federal Geographic Data Committee, 1998. Spatial data transfer standard (SDTS).
Few, S., 2006. Information dashboard design.
Few, S., 2004. Dashboard Confusion.
FGDC, 2010. Introduction to Metadata — Value of Metadata.
Fisher, P. F., 1999. Models of uncertainty in spatial data. Geographical information systems, 1, pp.191-205.
Fisher, P., Comber, A. and Wadsworth, R., 2006. Approaches to uncertainty in spatial data. Fundamentals of spatial data quality, pp.43-59.
Frank, A. U., 1998. Metamodels for data quality description. Data Quality in Geographic Information-From Error to Uncertainty, pp.192.
Friendly, M. and Denis, D. J., 2001. Milestones in the history of thematic cartography, statistical graphics, and data visualization.
Gervais, M., 2006. On the importance of external data quality in civil law. Fundamentals of Spatial Data Quality, pp.283-300.
Glemser, M., 2001. Zur Berücksichtigung der geometrischen Objektunsicherheit in der Geoinformatik. Bayerische Akademie der Wissenschaften in Kommission bei CH Beck.
Global Change Master Directory (GCMD), 2016. Directory Interchange Format (DIF) Writer's Guide. from https://gcmd.nasa.gov/add/difguide/index.html
Goodchild, M. F., 1993. Data models and data quality: problems and prospects. Environmental modeling with GIS, pp.94-103.
Goodchild, M. F., 1995. Sharing Imperfect Data. Report Global Resource Information Database Information Series (UNEP).
Goodchild, M., Buttenfield, B. and Wood, J., 1994. On introduction to visualizing data validity. Visualization in geographical information systems, pp.141-149.
Goodchild, M. F. and Gopal, S. (Eds.)., 1989. The accuracy of spatial databases. CRC Press.
Goodchild, M. F. and Kemp, K. K. (Eds.)., 1990. NCGIA Core Curriculum: Introduction to GIS (Vol. 1). National Center for Geographic Information and Analysis, University of California at Santa Barbara.
Goodchild, M., Lin Chih-Chang and Leung, Y., 1994. Visualizing fuzzy maps. In Hearnshaw, H. M. and Unwin, D. J., (eds.), Visualization in Geographical Information Systems: John Wiley & Sons, New York, pp.158–167.
Goodchild, M. F., and Longley, P. A., 1999. The future of GIS and spatial analysis. Geographical information systems, 1, pp.567-580.
Greenberg, J., 2005. Understanding metadata and metadata schemes. Cataloging & classification quarterly, 40(3-4), 17-36.
Greenberg, J., Pattuelli, M. C., Parsia, B. and Robertson, W. D., 2006. Author-generated Dublin Core metadata for web resources: a baseline study in an organization. Journal of Digital Information, 2(2).
Gregory, D., Johnston, R., Pratt, G., Watts, M., & Whatmore, S. Eds., 2011. The dictionary of human geography. John Wiley & Sons. pp. 353–60.
Guptill, S. C. and Morrison, J. L. (Eds.)., 2013. Elements of spatial data quality. Elsevier.
Heuvelink, G. B., Burrough, P. A. and Stein, A., 1989. Propagation of errors in spatial modelling with GIS. International Journal of Geographical Information System, 3(4), pp.303-322.
Hong, J. H. and Huang, M. L., 2013. The Design of Intelligent Workflow for GIS Functions: a Data Quality Perspective. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Hong Kong, China, Vol. XL-2/W1, pp.47-52.
Hong, J. H. and Huang, M. L., 2017. Enabling smart data selection based on data completeness measures: a quality-aware approach. International Journal of Geographical Information Science, 31(6), pp.1178-1197.
Hong, J.-H., Huang, M.-L. and Kuo, C.-L., 2010, 5-6 November 2010. A Spatio-Temporal Perspective towards the Intelligent and Interoperable Data Use in SDI Environment, Asia GIS 2010 International Conference (Asia GIS 2010), Taiwan.
Hong, J. H. and Liao, H. P., 2011. Incorporating visualized data completeness information in an open and interoperable GIS map interface. Journal of the Chinese Institute of Engineers, 34(6), pp.733-745.
Howard, D. and MacEachren, A. M., 1996. Interface design for geographic visualization: Tools for representing reliability. Cartography and Geographic Information Systems, 23(2), pp.59-77.
Hunter, G. J. and Beard, K., 1992. Understanding error in spatial databases. Australian surveyor, 37(2), pp.108-119.
ISO, ISO 19113, in Geographic information — Quality principles. ISO: Switzerland. 2002.
ISO, ISO 19114, in Geographic information — Quality evaluation procedures, ISO: Switzerland. 2003a.
ISO/TC-211, 2014. ISO/TC 19115 Geographic information – Metadata – Part 1: Fundamentals.
ISO, ISO 19119, in Geographic information — Services, ISO, 2005.
ISO, ISO 19136 Geographic information — Geography Markup Language (GML), 2007.
ISO, ISO/TS 19138, in Geographic information — Data quality measures, ISO, 2006.
ISO, ISO/TS 19139, in Geographic information — Metadata — XML schema implementation, ISO, 2007.
ISO/TC-211, 2013. ISO/TC 19157 Geographic information – Data quality.
ISO, ISO/DIS 19157, in Geographic information — Data quality, ISO, 2011.
Jacques Bertin, 1983. Semiology of Graphics: Diagrams, Networks, Maps. Translated by W. J. Berg. University of Wisconsin Press (in french 1967).
Jakobsson, A., & Giversen, J., 2007. Guidelines for implementing the ISO 19100 geographic information quality standards in national mapping and cadastral agencies. Eurogeographics Expert Group on Quality.
Jane Drummond, 1995. Positional accuracy. In Guptill S C, Morrison J L (eds) Elements of spatial data quality. Oxford, Elsevier Science: 31–58.
Joel L, Morrison, 1995. Spatial data quality. In Guptill S C, Morrison J L (eds) Elements of spatial data quality. Oxford, Elsevier Science: 1–12.
Lanter, D. P., 1991. Design of a lineage-based meta-data base for GIS. Cartography and Geographic Information Systems, 18(4), pp.255-261.
MacEachren, A. M., 1992. Visualizing uncertain information. Cartographic Perspectives, (13), pp.10-19.
MacEachren, A. M., Robinson, A., Hopper, S., Gardner, S., Murray, R., Gahegan, M. and Hetzler, E., 2005. Visualizing geospatial information uncertainty: What we know and what we need to know. Cartography and Geographic Information Science, 32(3), pp.139-160.
McClelland, M., 2003. Metadata standards for educational resources. Computer, 36(11), pp.107-109.
Mikhail, E. M. and Ackermann, F. E., 1976. Observations and least squares.
Moellering, H., 1987. A draft proposed standard for digital cartographic data (No. 87-308). National Committee for Digital Cartographic Data Standards.
OGC, 2006. OpenGIS Web Map Service (WMS) Implementation Specification.
OGC, 2007. Geography Markup Language (GML) Encoding Standard.
OGC, 2010. OpenGIS Web Feature Service 2.0 Interface Standard.
Pang, A., 2001, September 2001. Visualizing uncertainty in geo-spatial data. In Proceedings of the Workshop on the Intersections between Geospatial Information and Information Technology. Arlington, VA: National Research Council. pp.1-14.
Paradis, J. R. and Beard, K., 1994. Visualization of spatial data quality for the decision maker: a data quality filter (Master's thesis, in Surveying Engineering, University of Maine).
Roger Tomlinson, 1968. A Geographic Information System for Regional Planning.
Snow, J., 1855. On the mode of communication of cholera. John Churchill.
Stevens, S. S., 1946. On the theory of scales of measurement. Science, New Series, 103(2684), pp.677-680.
Timpf, S., Raubal, M. and Kuhn, W., 1997. Experiences with metadata. Technical University of Vienna, Department for Geoinformation.
Unwin, D. J., 1995. Geographical information systems and the problem of'error and uncertainty'. Progress in Human Geography, 19(4), pp.549-558.
USGS., 1947. United States National Map Accuracy Standards.
Van Oort, P. The Impact of Positional Accuracy on the Computation of Cost Functions. Fundamentals of Spatial Data Quality, pp.107-122.
Veregin, H., 1999. Data quality parameters. Geographical information systems, 1, pp.177-189.
Wang, R. Y. and Strong, D. M., 1996. Beyond accuracy: What data quality means to data consumers. Journal of management information systems, 12(4), pp.5-33.
William S., 2005. The Fifth Dimension of GIS. Spatially Enabled Business and Analytic Intelligence. Holland, Principal: GeoAnalytics, Inc. from http://www.esri.com/news/arcuser/0705/5thdimension1of2.html
Wolfgang Kainz, 1995. Logical consistency. In Guptill S C, Morrison J L (eds) Elements of spatial data quality. Oxford, Elsevier Science: 109–137.
Yang, T., 2007. Visualisation of spatial data quality for distributed GIS. Report The University of New South Wales, Australia.
Zar, J.H., 1984. Biostatistical Analysis. Prentice-Hall International, New Jersey, pp.43–45.
Zargar, A. and Devillers, R., 2009. An operation-based communication of spatial data quality. In: GEOWS '09 Proceedings of the 2009 International Conference on Advanced Geographic Information Systems & Web Services, Cancun, Mexico, pp.140-145.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw