進階搜尋


下載電子全文  
系統識別號 U0026-3108201610374900
論文名稱(中文) 蔗渣灰與卜作嵐材料運用於水泥砂漿之探討
論文名稱(英文) Application of Bagasse Ash and Pozzolanic Material to Cement Mortar
校院名稱 成功大學
系所名稱(中) 資源工程學系
系所名稱(英) Department of Resources Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 王譯鋒
研究生(英文) I-Feng Wang
學號 n48961098
學位類別 博士
語文別 中文
論文頁數 94頁
口試委員 指導教授-李振誥
口試委員-陳昭旭
口試委員-余騰鐸
口試委員-王建力
召集委員-劉正川
口試委員-陳清田
中文關鍵字 水泥砂漿  蔗渣灰  卜作嵐材料  抗壓強度 
英文關鍵字 Cement mortar  Bagasse ash  Pozzolanic material  Compressive strength 
學科別分類
中文摘要 現今世界上的建築材料中,水泥為人類用途廣泛、用量最大的建材,但卻也是高汙染、高耗能的製造產業,而蔗渣灰為蔗渣燃燒發電後所產生的二次廢棄物,若能使用蔗渣灰替代水泥,不僅能達到減少環境污染與消耗能源的問題,亦能達到廢棄物回收再利用之功效。本研究主要以不同含量的蔗渣灰(BA)取代部分水泥製作水泥砂漿立方試體,以測試不同水膠比在各種材料齡期下之抗壓強度與材齡達28天時觀察其比重及吸水率,並且在同一條件下與飛灰(FA)、爐石粉(SA)互相比較。另外,在研究中利用掃描式電子顯微鏡(Scanning Electron Microscope, SEM)進行微觀表面結構量測,並探討水化作用及卜作嵐反應特性的差異。由本研究試驗結果得知BA水膠比越高則晚期強度提升率越高,該結果可以證實其強度提升原因為卜作嵐反應且其反應效果超過FA與SA,且BA適用於高水膠比之水泥砂漿拌合配比,其水膠比與BA最佳取代水泥添加量呈正比,水膠比越高則BA可取代之水泥比例越高。BA卜作嵐反應所形成C-S-H膠體,其外觀呈連續且緻密的網絡狀,其BA的卜作嵐反應可將水泥漿體孔隙結構緻密化並提升強度。
英文摘要 Cement is the most widely and frequently used building material today. However, it is manufactured by a highly-polluting and energy-consuming industry. Bagasse ash (BA) is the secondary waste product from bagasse-fired power generation. If BA could become a replacement for cement, it would greatly reduce environmental pollution and energy consumption as well as achieve waste recycling. This study tested the early and late compressive strength of cubic cement mortar specimens with various water-binder ratios and different proportions of cement replaced with BA, observed their specific gravity and water absorption rates at 28 days, and compared BA with fly ash (FA) and slag ash (SA) under identical conditions The test results indicate that higher water-binder ratios with BA increase late-age strength, which proves that the pozzolanic reaction is the cause of this increase and that its reaction effects surpass those of FA and SA. Furthermore, BA is suitable for cement mortar mixtures with high water-binder ratios, and the optimal proportion of cement replaced with BA is proportional to the water-binder ratio; a higher water-binder ratio means that more cement can be replaced with BA. The C-S-H gel formed by the BA pozzolanic reaction displays a continuous and dense grid pattern. The BA pozzolanic reaction increases the density and strength of the porous structures in cement paste.
論文目次 中文摘要………………………………………………………………………i
英文摘要……………………………………………………………………...ii
誌 謝……………………………………………………….………………...vi
目 錄……………………………………………………….……………….viii
表 目 錄…………………………………………………………….…….....xi
圖 目 錄…………………………………………………………..……..... .xii
第一章 緒論.....……………………………..………………………………01
1-1研究動機…………………………………………………………...01
1-2研究目的……………………………………………………...……02
1-3本文概述…………………………………………………………...04
1-4流程規劃…………………………………………………………...06
第二章 文獻回顧...………………………………………………...……….07
2-1蔗渣灰與卜作嵐掺料之研究現況………………………………...07
2-1-1蔗渣灰產生……………………………………………..…..08
2-1-2蔗渣灰特性……………………………………..…………..09
2-1-3卜作嵐掺料與蔗渣灰對混凝土的應用……………...…….11
2-1-4卜作嵐掺料............................................................................13
2-1-4-1飛灰...........................................................................14
2-1-4-2爐石粉.......................................................................15
2-2水泥組成與水化作用……………………………………………...16
2-2-1水泥組成…………………………………….……………...17
2-2-2水泥之水化行為……………………………………….…...20
2-2-3水化產物之結構及其性質…………………………….…...22
2-2-4孔隙與結構…………………………………………….…...25
2-2-5卜作嵐反應............................................................................27
第三章 材料與方法....……………………………………...………………28
3-1試驗背景…………………………………………………………...28
3-2材料介紹…………………………………………………………...29
3-3儀器設備…………………………………………………………...36
3-4試驗方法…………………………………………………………...46
3-4-1水泥砂漿立方試體配比設計……………………………...46
3-4-2水泥砂漿立方試體製作…………………………………...48
3-4-3水泥砂漿立方試體抗壓強度試驗……………...………....49
3-4-4水泥砂漿流度試驗…………………………………….......51
3-4-5水泥砂漿比重與吸水率試驗...............................................52
3-4-6掃描式電子顯微鏡...............................................................53
第四章 結果與討論…….…………………………..………………………55
4-1水泥砂漿試體抗壓強度試驗……………………………………...55
4-2水泥砂漿流度試驗………………………………………………...64
4-3水泥砂漿比重與吸水率試驗……………………………………...68
4-4初凝與終凝時間影響……………………………………………...73
4-5掃描式電子顯微鏡試驗分析……………………………………...74
第五章 結論與建議………………………………………...………………79
5-1結論...…….…………………………………...……………………79
5-2建議...…….…………………………………………...……………87
參考文獻 ……………………………………….…………………………..89
參考文獻 1. Abbasi, A. and A. Zargar, (2013), “Using Baggase Ash in Concrete as Pozzolan,” Middle-East Journal of Scientific Research, Vol.13, p.716-719.
2. Abdulkadir, T., Oyejobi, D. and A. Lawal, (2014), “BAGASSE ASH AS A REPLACEMENT FOR CEMENT IN CONCRETE WORKS,” ACTA TEHNICA CORVINIENSIS – Bulletin of Engineering, Vol.3, p.71-76.
3. Aggarwal, L. K., (1995), “Bagasse-Reinforced Cement Composites,” Cement and Concrete Composites, Vol.17, p.107- 112.
4. Akram, T., Memon, S. A. and H. Obaid, (2009), “Production of low cost self compacting concrete using bagasse ash,” Construction and Building Materials, Vol.23, p.703–712.
5. Alexander, M. G. and B. J. Magee, (1999), “Durability performance of concrete containing condensed silica fume,” Cement and Concrete Research, Vol.29, p.917-922.
6. Amin, N.-u. (2011), “Use of Bagasse Ash in Concrete and Its Impact on the Strength and Chloride Resistivity,” Journal of Materials in Civil Engineering, Vol.23, p.717-720.
7. Appa, R. G.., (2001), “Role of water-binder ratio on the strength development in mortars incorporated with silica fume,” Cement and Concrete Research, Vol.31, p.443-447.
8. Aprianti, E., Shafigh, P., Bahri, S. and J. N. Farahani, (2015), “Supplementary cementitious materials origin from agricultural wastes–A review,” Construction and Building Materials, Vol.74, p.176-187.
9. Bahurudeen, A. and M. Santhanam, (2014), “Performance Evaluation of Sugarcane Bagasse Ash-Based Cement for Durable Concrete,” 4th International Conference on the Durability of Concrete Structures Purdue University, West Lafayette, USA., p.275-281.
10. Bentur, A., (2002), “Cementitious materials-nine millennia and a new century:Past, present and future,” Journal of Materials in Civil Engineering, Vol.14, p.2–22.
11. Benze, D. P., Stutzman, P. E. and E. J. Garboczi, (1992), “Experimeatal and Simulation Studies of the Interfacial Zone in Concrete,” Cement and Concrete Research, Vol.22, p.891-902.
12. Biricik, H., Akoz, F., Ihan, B. I. and A. N. Tulgar, (1999), “Study of pozzolanic properties of wheat straw ash,” Cement and Concrete Research, Vol.29, p.637– 643.
13. Boddy, A. M., Hooton, R. D. and M. D. A. Thomas, (2000), “The effect of product form of silica fume on its ability to control alkali-silica reaction,” Cement and Concrete Research,Vol.30, p.1139–1150.
14. Cahyadi, J. H., (2003), “Effects of densified silica fume on microstructure and compressive strength of blended cement pastes,” Cement and Concrete Research, Vol.33, p.1543-1548.
15. Calligaris, G. A., Franco, M. K., Aldrige, L. P., Rodrigues, M. S., Beraldo, A. L., Yokaichiya, F., et al., (2015), “Assessing the pozzolanic activity of cements with added sugar cane straw ash by synchrotron X-ray diffraction and Rietveld analysis,” Construction and Building Materials, Vol.98, p.44-50.
16. Chusilp, N., Jaturapitakkul, C. and K. Kiattikomol, (2009), “Utilization of bagasse ash as a pozzolanic material in concrete,” Construction and Building Materials, Vol.23, p.3352–3358.
17. Cordeiro, G. C., Filho, R. D. T., Tavares, L. M. and Fairbairn, E. M. R., (2008), “Pozzolanic activity and filler effect of sugar cane bagasse ash in Portland cement and lime mortars,” Cement and Concrete Composites, Vol.30, p.410–418.
18. Cordeiro, G. C., Filho, R. D. T., Tavares, L. M. and Fairbairn, E. M. R., (2009), “Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete,” Cement and Concrete Research, Vol.39, p.110–115.
19. Cordeiro, G., Toledo, F. R., Tavares, L. and E. Fairbairn, (2012), “Experimental characterization of binary and ternary blended-cement concretes containing ultrafine residual rice husk and sugar cane bagasse ashes,” Construction and Building Materials, Vol.29, p.641-646.
20. Fairbairn, E. M., Americano, B. B., Cordeiro, G. C., Paula, T. P., Toledo Filho, R. D. and M. M. Silvoso, (2010), “Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits,” J Environ Manage, Vol.91, p.1864-1871.
21. Frias, M., Villar-Cocina, E. and E. Valencia-Morales, (2007), “Characterisation of sugar cane straw waste as pozzolanic material for construction: Calcining temperature and kinetic parameters,” Waste Management, Vol.27, p.533–538.
22. Frías, M., Villar, E. and H. Savastano, (2011), “Brazilian sugar cane bagasse ashes from the cogeneration industry as active pozzolans for cement manufacture,” Cement and Concrete Composites, Vol.33, p.490-496.
23. Ganesan, K., Rajagopal, K. and K. Thangavel, (2007), “Effect of ground hazel nutshell,” HCement and Concrete CompositesH, Vol.28, p.515-524.
24. Ganesan, K., Rajagopal, K. and K. Thangavel, (2007), “Evaluation of bagasse ash as supplementary cementitious material,” Cement and Concrete Composites, Vol.29, p.515–524.
25. Karim, M., Zain, M., Jamil, M., Lai, F. and M. Islam, (2011), “Strength development of mortar and concrete containing fly ash: A review,” International Journal of the Physical Sciences, Vol.6, p.4137-4153.
26. Karim, M., Zain, M., Jamil, M., Lai, F. and M. Islam, (2012), “Strength of mortar and Concrete as influenced by Rice husk ash: a review,” World Applied Sciences Journal, Vol.19, p.1501-1513.
27. Karim, M., Zain, M., Jamil, M. and F. Lai, (2013), “Fabrication of a non-cement binder using slag, palm oil fuel ash and rice husk ash with sodium hydroxide,” Construction and Building Materials, Vol.49, p.894-902.
28. Kawade, U., Rathi, V. and V. Girge, (2013), “Effect of use of Bagasse Ash on Strength of Concrete, International Journal of Innovative Research in Science,” Engineering and Technology, Vol.2, p.2997-3000.
29. Loh, Y., Sujan, D., Rahman, M. and C. Das, (2013), “Sugarcane bagasse—The future composite material: A literature review,” Resources, Conservation and Recycling, Vol.75, p.14-22.
30. Madurwar, M. V., Ralegaonkar, R. V. and S. A. Mandavgane, (2013), “Application of agro-waste for sustainable construction materials: A review,” Construction and Building Materials, Vol.38, p.872-878.
31. Martirena, H. J. F., Middendorf1, B., Gehrke, M. and Budelmann, H., (1998), “Use of wastes of the sugar industry as pozzolana in lime-pozzolana binders study of the reaction,” Cement and Concrete Research, Vol.28, p.1525–1536.
32. Moraes, J., Akasaki, J., Melges, J., Monzó, J., Borrachero, M., Soriano, L., et al., (2015), “Assessment of sugar cane straw ash (SCSA) as pozzolanic material in blended Portland cement: Microstructural characterization of pastes and mechanical strength of mortars,” Construction and Building Materials, Vol.94, p.670-677.
33. Otoko, G. R., (2014), “Use of Bagasse Ash as Partial Replacement of Cement in Concrete,” International Journal of Innovative Research and Development, Vol.3, p.285-289.
34. Payá, J., Monzó, J., Borrachero, M. V., Díaz-Pinzón, L., Ordóñez, L. M., (2002), “Sugar-cane bagasse ash (SCBA): studies on its properties for reusing in concrete production,” Journal of Chemical Technology and Biotechnology, Vol.77, p.321-325.
35. Rao, G. A. and P. B. K. Raghu, (2002), “Influence of the roughness of aggregate surface on the interface bond strength,” Cement and Concrete Research, Vol.32, p.253-257.
36. Sales, A. and S. A. Lima, (2010), “Use of Brazilian sugarcane bagasse ash in concrete as sand replacement,” Waste Management, vol.30, p.1114–1122.
37. Saraswathy, V. and H. W. Song, (2007), “Corrosion performance of rice husk ash blended concrete,” Construction and Building Materials, Vol.21, p.1779–1784.
38. Scrivener, K. L., (2004), “Backscattered electron imaging of cementitious microstructures: understanding and quantification,” Cement and Concrete Research, Vol.26, p.935-945.
39. Sharif, M. B., Firdous, R. and M. A. Tahir, (2015), “Development of Local Bagasse Ash as Pozzolanic Material for Use in Concrete,” Pak. J. Engg. & Appl. Sci.17, p.39-45.
40. Shrivas, A., Jain, D. and R. Joshi, (2015), “Application of Different Waste in Concrete as a Partial Replacement of Cement,” International Journal of Science Technology & Engineering, Vol.2, p.89-107.
41. Singh, N. B., Singh, V. D. and R. Sarita, (2000), “Hydration of bagasse ash-blended portland cement,” Cement and Concrete Research, Vol.30, p.1485- 1488.
42. Somna, R., Jaturapitakkul, C., Chalee, W. and P. Rattanachu, (2011), “Effect of the water to binder ratio and ground fly ash on properties of recycled aggregate concrete,” Journal of Materials in Civil Engineering, Vol.24, p.16-22.
43. Sua-iam, G. and N. Makul, (2013), “Use of increasing amounts of bagasse ash waste to produce self-compacting concrete by adding limestone powder waste,” Journal of Cleaner Production, Vol.57, p.308-319.
44. Tillman, D. A., (1979), “Wood as an Energy Resource,” Energy Citations Database, , p.65-87.
45. Yajun, J., Cahyadi, J. H., (2003), “Effects of densified silica fume on microstructure and compressive strength of blended cement pastes,” Cement and Concrete Research, Vol.33, p.1543-1548.
46. Young等作,2000,「土木工程材料-科學與應用」,謝素蘭譯,五南圖書出版有限公司。
47. Zhang, M. H. and V. Mohan Malhotra, (1996), “High-Performance concrete incorporating rice husk ash as supplementary cementing material,” ACI Materials Journal, Vol.93, p.629–636.
48. 王亮力,2006,「氧化鋯於水泥砂漿之力學特性與水化熱探討」,國立嘉義大學土木與水資源工程學系,碩士論文。
49. 李宏龍,2002,「以高分子改質混凝土固化處理焚化爐飛灰之可行性研究」,國立中正大學化學工程研究所,碩士論文。
50. 李奕齊,2009,「蔗渣灰應用於水泥基複合材料之研究」,國立台灣海洋大學河海工程學系,碩士論文。
51. 李健誌,2011,「蔗渣灰摻料應用於水泥砂漿之探討」,國立嘉義大學土木與水資源工程學系,碩士論文。
52. 沈永年、林仁益、黃兆龍,1990,「添加防水摻料對水泥砂漿/漿體巨微觀性質影響之研究」,技術學刊,第五卷,第二期,第95~106頁。
53. 林維明、吳介源,1998,「混凝土的微觀與巨觀行為對結構物的強度及耐久性之影響」,表面工業雜誌,第七十一卷期,第57~73頁。
54. 林建志,2002,「水泥砂漿材料強度參數c、φ值之研究」,國立台北科技大學土木與防災研究所,碩士論文。
55. 林昭元,2004,「鈣矽酸鹽骨水泥的機械性質與水合機制」,國立清華大學 材料科學工程研究所,碩士論文。
56. 林其賢,2004,「奈米改質黏土對水泥砂漿材質之影響」,國立成功大學土木工程學系研究所,碩士論文。
57. 苗伯霖,1999,「飛灰爐石於混凝土工程之合理運用」,台灣營建研究院。
58. 許純雅,2006,「高矽質稻殼灰對水泥性能之影響」,國立高雄應用科技大學土木工程與防災技術研究所,碩士論文。
59. 黃兆龍,1997,「混凝土性質與行為」,詹式書局。
60. 黃南星,2001,「廢觸媒添加於高性能混凝土對耐久性之影響」,國立雲林科技大學營建工程系,碩士論文。
61. 湛淵源、黃兆龍,2001,「總膠結漿量對混凝土性質之影響」,中國土木水利工程學刊,第十三卷,第一期,第207-215頁。
62. 蘇南、林建志、楊鑫城,2002,「矽灰、高嶺土及廢觸媒對強塑劑水泥砂漿性質影響之比較」,中國土木水利工程學刊,第十四卷,第二期,第319-325頁。
63. 蘇欣宏,2005,「微粒化材料應用於混凝土強度之研究」,國立嘉義大學土木與水資源工程學系,碩士論文。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-09-08起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-09-08起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw