進階搜尋


下載電子全文  
系統識別號 U0026-3108201509502600
論文名稱(中文) 以反應曲面法優化TFT-LCD可靠度試驗之外引腳腐蝕試驗
論文名稱(英文) An Application of Response Surface Methodology to Improve the OLB corrosion test in TFT-LCD Industry
校院名稱 成功大學
系所名稱(中) 工業與資訊管理學系碩士在職專班
系所名稱(英) Department of Industrial and Information Management (on the job class)
學年度 103
學期 2
出版年 104
研究生(中文) 謝國彬
研究生(英文) Guo-Bin Xie
學號 R37021016
學位類別 碩士
語文別 中文
論文頁數 60頁
口試委員 指導教授-王泰裕
口試委員-陳梁軒
口試委員-謝中奇
中文關鍵字 反應曲面法  可靠度試驗  薄膜電晶體液晶顯示器  外引腳腐蝕 
英文關鍵字 Response Surface Methodology  Reliability test  Thin Film Transistor Liquid Crystal Display  OLB corrosion test 
學科別分類
中文摘要 受到西元2000年代後期之金融海嘯衝擊,加上供過於求的市場生態,使得台灣薄膜電晶體液晶顯示器(Thin Film Transistor Liquid Crystal Display, TFT-LCD )產業變得更加嚴峻。在日韓優勢技術的威脅,與中國快速的產能成長挑戰下,如何有效運用有限資源與控制成本,發展性能、品質兼備的產品,成了國內企業存活的關鍵。隨著TFT-LCD廣泛應用在日常生活中,使得TFT-LCD操作環境變得更加多樣化,且消費市場對產品更新腳步的要求,甚至已達到以季為單位的汰換速度,造成產品開發時程越趨縮短的現象。而目前此產業開發階段之可靠度加速試驗之應力水準組合過於龐大,由於鮮少探討何種組合為最適條件,業界常以同時執行多種應力水準試驗,來確認產品失效的發生,此現象將造成重複試驗,以致開發時間延長和開發成本的上升,因此本研究將針對產業現有計量值呈現的各種不同加速試驗應力水準,利用反應曲面法(Response Surface Methodology, RSM)從中求得最短時間誘發失效之加速試驗應力水準。
研究過程以TFT-LCD之外引腳腐蝕試驗來發展,建立以最短失效發生時間為目標之最佳可靠度試驗應力水準設定方法。研究中採用台灣某一面板廠之32吋面板做為樣本,透過23與Box-Behnken設計(Box-Behnken Design, BBD)因子實驗所得之結果,最終試驗應力之最適化設定為:溫度85℃;相對溼度82%;晶片驅動電壓15V,此一設定下反應值並非是最小值而是一鞍點,但已是現實環境限制下,能夠實際執行之最佳解。在實地執行研究所得之結果,經與其他兩種常被使用之實驗條件做穩健性驗證,其驗證結果確實為最快加速失效發生之試驗應力組合,能夠有效縮短試驗時間,可藉以減少試驗應力水準組合,降低挖掘失效之可靠度試驗成本,並改善可靠度試驗執行計畫之效率。


關鍵字:反應曲面法、可靠度試驗、薄膜電晶體液晶顯示器、外引腳腐蝕
英文摘要 SUMMARY

With the rapid demand for a new generation product in the consumer market, the time available for product development tends to be shrunken in the product development process. Consequently, the competition in TFT-LCD (Thin Film Transistor Liquid Crystal Display) industry become very tight. And the reliability tests in this industry are vital to the customers’ satisfaction. This study will focus on variables currently existing in reliability tests of this industry and a variety of stress levels in an accelerated test are screened. Then the RSM (Response Surface Methodology) is applied to find the combination of failure variables in the accelerated test in the shortest time.

In the research process, OLB (Outer Lead Bonding) corrosion is tested through analyzing the results from two factorial experiments, including a factorial design and the Box-Behnken Design (BBD). A combination of temperature of 85℃, relative humidity of 82%, and a driver voltage IC of 15V is found to be the optimizing experimental conditions. And the results for which are robustness tested to verify them as the most efficient combination of variables. By using this combination, the experimental time can be shortened effectively, and the cost of the reliability test can also be reduced. Furthermore, the efficiency of the reliability test program is improved.

Key words: Response Surface Methodology, Reliability test, Thin Film Transistor Liquid Crystal Display, OLB corrosion test
論文目次 目錄
摘要 ……………………………………………………………………………...…ii
英文摘要 ………………………………………………………………………..…iii
致謝 ………………………………………………………………………………..vi
目錄 …………………………………………………………………………….....vii
表目錄 …………………………………………………………………………......ix
圖目錄 ……………………………………………………………………………...x
第一章 緒論 ……………………………………………………………………….1
第一節 研究背景與動機 …………………………………………………...1
第二節 研究目的 …………………………………………………………...2
第三節 研究範圍、方法與限制 …………………………………………...3
第四節 論文架構 …………………………………………………………...3
第二章 文獻探討 ………………………………………………………………….5
第一節 TFT-LCD外引腳腐蝕 ……………………………………………..5
第二節 可靠度試驗 ………………………………………………………...7
第三節 反應曲面法 ……………………………………………………….12
第四節 小結 ……………………………………………………………….16
第三章 以反應曲面法優化可靠度試驗 ………………………………………...17
第一節 問題描述 ………………………………………………………….17
第二節 研究架構 ………………………………………………………….18
第三節 應力的選擇 ……………………………………………………….20
第四節 最短失效時間之反應曲面模型的建立 ………………………….22
第五節 模型驗證 ………………………………………………………….25
第六節 小結 ……………………………………………………………….27
第四章 實例驗證 ……………………………………………………………….29
第一節 起始點建立 ……………………………………………………….29
第二節 一階模型建立 …………………………………………………….30
第三節 二階模型建立 …………………………………………………….34
第四節 正準分析 ………………………………………………………….40
第五節 可行解穩健性驗證 ……………………………………………….43
第六節 小結 ……………………………………………………………….44
第五章 結論 …………………………………………………………………….46
第一節 研究結論 ………………………………………………………….46
第二節 研究貢獻 ………………………………………………………….47
第三節 未來發展與建 …………………………………………………….48
參考文獻 ………………………………………………………………………….50
附錄 ……………………………………………………………………………….55
附錄A一階模型配適之軟體原始分析報告 ………………………………55
附錄B二階模型配適之軟體分析報告(full model) ……………………….57
附錄C二階模型配適之軟體分析報告(reduced model) …………………..59
參考文獻 參考文獻
王宗華 (民95 ),可靠度工程技術手冊-九五年三月出版六刷,中華民國品質學會,台北市。
林耀生和黃元璋 (民92),COG構裝技術,工業材料雜誌,200期,157頁至168頁。
吳文發和秦玉龍 (民88),電遷移效應對銅導線可靠度之影響,奈米通訊,第六卷一期,17頁至20頁。
柯煇耀 (民97),可靠度保證-工程與管理技術之應用第四版,中華民國品質學會,台北市。
彭鴻霖 (民89),可靠度技術手冊-可靠度標準與規範,國家太空計畫室。
鄭建星、王振興、陳君瑋 (民94),以新方法消除鋁薄膜退火突起,行政院國家科學委員會專題研究計畫。
黎正中 (譯) (民101),實驗設計與分析,高立,新北市(Montgomery, D. C., 2009)
Ambat, R., Jensen, S. G., and Moller, P., 2008, Corrosion reliability of electornic systems,ECS Transactions, 6, 24, 17-28.
Arai, T., Makita, A., Hiromasu, Y., and Takatsuji, H., 2001, Mo-capped Al Nd alloy for both gate and data bus lines of liquid crystal displays, Thin Solid Films, 383, 1-2, 287-291.
Bas, D. and Boyaci, I. H., 2007, Modeling and optimization I: usability of response surface methodology, Journal of Foood Engineering, 78, 3, 836-845.
Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., and Escaleira, L. A., 2008, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, 76, 5, 965-977.
Box, G., and Hau, I., 2001, Experimental designs when there are one or more factorconstraints, Journal of Applied Statistics, 28, 8, 973-989.
Cheng, H. C., Tsai, Y. M., and Lu, S. T., 2013,Interconnect reliability characterization of a high-density 3-D chip-on-chip interconnect technology, IEEE Transactions on Components, Packaging and Manufacturing Technology, 3, 12, 2037-2047.
Cheng, H. C., Hsieh, K. Y., and Chen, K. M., 2011, Thermal–mechanical optimization of a novel nanocomposite-film typed flip chip technology, Microelectronics Reliability, 51, 4, 826-836.
Cheng, S. W. and Wu, C. F. J., 2001, Factor screening and response surface exploration-rejoinder, Statistica Sinica, 11, 3, 600-604.
Collins, D. H., Freels, J. K., Huzurbazar, A. V., Warr, R. L., and Weaver, B. P., 2013,Accelerated test methods for reliability prediction, Journal of Quality Technology, 45, 3, 244-259.
Devos, O., Gabrielli, C., Betitone, L., Mace, C., Ostermann, E., and Perrot, H., 2007, Growthof electrolvtic copper dendrites.1:current transients and optical observation,Journal of Electroanalytical Chemistry, 606, 2, 85-94.
Gao, H., Zhang, D., Gao, L. L., and Ma, J. H., 2014, The coupling effects of temperature electric current and stress on the adhesion and electrical properties of COG assembly, Microelectronics Reliability, 54, 8, 1603-1612.
IEC 60050-191, 1990, Dependability and quality of service, International Electrotechnical Commission, Geneva, Switzerland.
ISO 8402, 1986, Quality Vocabulary, International Organization for Standardization , Geneva, Switzerland.
ISO 7730, 1994, Moderate Thermal Environments-Determination of the PMV and PPD Indices and Specification of the Conditions for Thermal Comfort, International Organization for Standardization , Geneva, Switzerland.
ISO 7730, 2005, Ergonomics of the Thermal Environment-Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria, International Organization for Standardization , Geneva, Switzerland.
Jeong, J. S. and Kim, Y. J., 2010, Failure mechanism of COF based line driver IC for flat panel display by contamination, Microelectronics Reliability, 50, 9-11, 1488-1493.
Kao, M. T. and Lin, J. F., 2012, Effects of deposition conditions of the Al film in Al/Glass specimens and annealing conditions on internal stresses and hillock formations, Thin Solid Films, 520, 16, 5353-5360.
Kim, J. H., Lee, H., Choi, S., Bae, K. H., and Park, J. Y., 2013, Impact of water corrosion on nanoscale conductance on aluminum doped zinc oxide, Thin Solid Films, 547,
163-167.
Ma, E. and Xu, Z. M., 2013, Technological process and optimum design of organic materials vacuum pyrolysis and indium chlorinated separation from waste liquid crystal display panels, Journal of Hazardous Materials, 263, 2, 610-617.
Marchut, L., Meeder. M. G., and Stark, T., 2014, Process reliability screening in situ, Microelectronics Reliability, 54, 2, 342-348.
Mattila, T. T. and Kivilahti, J. K., 2010, The role of recrystallization in the failure of Sn-Ag-Cu solder interconnections under thermomechanical loading, IEEE Transactions on Components and Packaging Technologies, 33, 3, 629-635.
Meeker, W. Q. and Escobar, L. A., 2004, Reliability: The other dimension of quality, Quality Technology & Quantitative Management, 1, 1, 1-25.
Meeker, W. Q. and Escobar, L. A., 2006, A review of accelerated test models, Statistical Science, 21, 4, 552-577.
Meeker, W. Q., Sarakakis, G., and Gerokostopoulos, A., 2013, More pitfalls of accelerated tests, Journal of Quality Technology, 45, 3, 213-222.
Mei, Y. H., Lu, G. Q., Chen, X., Gang, C., Luo, S. F., and Ibitayo, D., 2011, Investigation of Post-Etch copper residue on direct bonded copper substrates, Journal of Electronic Materials, 40, 10, 2119-2125.
MIL-STD-785B, 1980, Reliability Program for System and Equipment Development
and Production. Department of Defense, United States of America, Washington DC.
MIL-STD-721C, 1981, Definitions of Terms for Reliability and Maintainability, Department of Defense, United States of America, Washington DC.
Robinson, T. J., Borror, C. M., and Myers, P. H., 2004, Robust parameter design: a review,Quality and Reliability Engineering International, 20, 1, 81-101.
Peiravi, A., 2009, Design of HALT and environmental stress screening procedures for high reliability electronic products to reduce life cycle costs, Australian Journal of Basic and Applied Sciences, 3, 3, 1800-1913.
Shien, R. and Masumi, S., 2012, Diffusion-fatigue interaction effect on hillock formation in aluminum thin films under thermal cycle testing, Materials Letters, 79, 139-141.
Shih, J. Y., Chen, Y. C., Chiu, C. H., Hu, Y. C., Lo, C. L., Chang, C. C., and Chen, K. N., 2013, Advenced TSV-based crystal resonator devices using 3-D integration scheme whith hermetic scaling, IEEE Electron Device Letters, 34, 8, 1041-1043.
Snook, I., Marshall, J. M., and Newman, R. M., 2003, Physics of failure-as an integrated part of design for reliability, Annual Reliability and Maintainability Symposium, 2003 Proceedings, 46-54.
Sony Corporation, 2000, Quality and Reliability Handbook , Sony Semiconductor,
39-42.
Suhir, E., 2002, Accelerated life testing (ALT) in microelectronics and photonics: its role, attributes, challenges, pitfalls, and interaction with qualification tests, Journal of Electronic Packaging, 124, 3, 281-291.
Tekcan, T. and Kirisken, B., 2010, Reliability test procedures for achieving highly robust electronic products, Annual Reliability and Maintainability Symposium 2010 Proceedings, 13D-2.
Vaughen, B. K., Roth, J. A., Steppan, J. J., Hall, L. C., and Major, C.P., 1988, Electrolytic copper migration in accelerated tests 1. Polyethylene glycol-400 dopedwith ammonium perchlorate, Journal of the Electrochemical Society, 135, 8, 2027-2033.
Yang, K. and Yang, G. B., 1998, Robust reliability design using environmental stress testing, Quality and Reliability Engineering International, 14, 6, 409-416.
Yang, K. and Yang, G. B., 2002, Accelerated degradation-tests with tightened critical values, IEEE Transactions on Reliability, 51, 4, 463-468.
Zehe, E., 2001, The stress-induced escape of migrating aluminum from silicide interconnects, Semiconductor Science and Technology, 16, 10, 817-821.
Zhu, Y. D. and Elsayed, E. A., 2013, Design of accelerated life testing plans under multiple stresses, Naval Research Logistics, 60, 6, 468-478.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-09-11起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-09-11起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw