進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-3108201423591500
論文名稱(中文) 金屬玻璃薄膜力學性質之原子尺度模擬
論文名稱(英文) Atomistic simulation of mechanical properties of metallic-glass thin films
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 吳俊毅
研究生(英文) Chun-Yi Wu
電子信箱 cywu0918@gmail.com
學號 n68981149
學位類別 博士
語文別 英文
論文頁數 161頁
口試委員 指導教授-王雲哲
口試委員-黃忠信
口試委員-林育芸
口試委員-侯琮欽
口試委員-朱瑾
口試委員-朱訓鵬
口試委員-陳俊杉
口試委員-盧建銘
中文關鍵字 金屬玻璃  薄膜  分子動力學模擬  奈米壓痕  結構異向性 
英文關鍵字 metallic glass  thin film  molecular dynamics simulation  indentation  anisotropy 
學科別分類
中文摘要 金屬玻璃是一種很有前途的新興材料,在鍍膜上提供足夠的硬度及其他優異性能。為了瞭解其材料力學性質、不同結構與組成的關係以及提供更好的材料製程分析,本論文在電腦上通過模擬金屬濺鍍沉積在鈦基板上‘產生’ (Cu50Zr50)100-xAlx (x = 0,2,4,5,6,8,10,12 的原子比例)的金屬玻璃薄膜。濺鍍沉積的分子動力學模擬使用氬離子作為工作氣體,金屬原子與作用氣體(Ar+) 間作用力使用Moliere勢能。以及使用tight-binding多體勢能來模擬多種金屬原子之間的交互作用行為。藉由計算徑向分佈函數與同步實驗資料做比對,確定了所沉積薄膜的模擬結果為非晶格的系統,並分析XRD在40度有峰值以及MSD擴散機制。由於濺射動能使得鈦基板和金屬玻璃薄膜之間的界面嵌入銅原子,鋯原子和鋁原子。

為了表現出金屬玻璃薄膜的機械性能,本研究採用了直角圓錐探針來做奈米壓痕模擬,藉由與實驗Oliver-Pharr同樣方法來模擬計算出常溫常壓下不同Al比例薄膜的楊式模數為80-120 GPa,硬度為6-8 GPa。模擬結果與實驗數據一致。在不同的深度與厚度的比例下之金屬玻璃的表面觀察到,均勻塑性流動堆積的現象,且從MD計算的堆積指標與實驗結果是可以相互比較的。接著探討5%Al薄膜在不同溫度下的奈米壓痕模擬,楊式模數隨溫度改變速率為96.7 MPa/K下降;硬度隨時間改變速率為1.1 MPa/K與9.3 MPa/K下降,在玻璃轉換溫度650 K-750 K附近有轉折;堆積指數在玻璃轉換溫度650 K-750 K亦有不正常跳躍現象。實驗的玻璃轉換溫度約為700 K可以互相比較。原子應變計算顯示了局部變形,確定剪力帶的生成,金屬玻璃的變形機制為剪力帶的形成與傳遞,此機制亦控制金屬玻璃的機械性質。另外,彈性異向性的計算,確定了原子尺度下的結構異向性,和觀察到結構鬆弛的現象,與實驗觀測的定性有著相關聯性。
英文摘要 Metallic glass is a promising class of materials that provide sufficient hardness and other superior properties for coating purposes. In order to know the materials mechanical properties, provide a better understanding of structure-property relations, and provide more solutions to industry for widely use metallic glass-formers. We adopt the molecular dynamics simulation methodology to simulate sputter deposition, hence to ‘manufacture’ the (Cu50Zr50)100-xAlx (x = 0, 2, 4, 5, 6, 8, 10, 12, atomic percent) metallic-glass thin films on the titanium substrate in the computer. The same idea has been used to manufacture Zr-based metallic glasses. The sputter deposition simulation includes the interaction between argon ions, as the working gas, and metallic atoms that are modeled by the tight-binding interatomic potential. It is identified that the as-deposited films are amorphous, as verified by calculated radial distribution functions of the film calculated being compared with synchrotron experimental data. And XRD analysis with a peak at 40 degrees and MSD diffusion mechanism. The interface between the titanium substrate and metallic-glass thin film contains penetrated copper, zirconia and aluminum atoms that are embedded in the substrate due to sputter kinetic energy.

In order to characterize the mechanical properties of the metallic-glass film, nano-indentation simulations with a right-angle conical indenter tip is adopted, and a procedure similar to the experimental Oliver-Pharr method is utilized to extract modulus are 80-120 GPa and hardness 6-8 GPa of the films under normal temperature and pressure by simulation. Our calculated quantities are qualitatively in agreement with experimental data. In addition, the pileup index under different depth-to-thickness ratios are quantitatively obtained to indicate the nature of homogeneous flow at this length scale. Then discuss 5%Al under different temperature. The decreasing rate of Young’s modulus is about 96.7 MPa/K. The decreasing rate of hardness is about 1.1 MPa/K and 9.3 MPa/K. Around the glass-transformation temperature 650 K-750 K has some unusual changes, and the pileup index also has some unusual issue. Furthermore, atomic strain calculation reveals deformation localization to identify shear bands. Moreover, elastic anisotropy is calculated to identify structural anisotropy at the atomic scales, and the phenomenon of structural relaxation has been observed, which is qualitatively correlated to experimental observables. Several calculated indicators show evidence of glass transition of the metallic glasses, which are previously un-noticed.
論文目次 CHINESE ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Goals and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Theoretical foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Molecular dynamics simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.1 The velocity Verlet algorithm . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Classical molecular dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Newton’s laws of motion: Lagrangian and Hamiltonian formula . . . . 11
2.2.2 Liouville equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Sympletic integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.4 The microcanonical NVE ensemble . . . . . . . . . . . . . . . . . . . 17
2.2.5 The canonical NVT ensemble . . . . . . . . . . . . . . . . . . . . . . 18
2.2.6 Nos´e - Hoover equations . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.7 The isothermal-isobaric NPT ensembles . . . . . . . . . . . . . . . . . 19
2.3 Physical quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Structural factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Correlation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3 Partial distribution function . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.4 Atomic strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.5 Virial stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.6 Green Kubo relations and Linear Response Theory . . . . . . . . . . . 30
2.3.6.1 Elastic constants . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.6.2 Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.6.3 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.6.4 Mean-square distribution (MSD) . . . . . . . . . . . . . . . 36
3 Computational considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1 Machine description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Comparison of computational efficiency . . . . . . . . . . . . . . . . . . . . . 41
4 Sputter deposition simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1 Molecular-dynamics model construction through sputter deposition simulations 49
4.2 Analysis the as-deposited thin films . . . . . . . . . . . . . . . . . . . . . . . 55
5 Mechanical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.1 Elastic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Plastic properties under indentation . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3 Mechanical behavior under uniaxial deformation . . . . . . . . . . . . . . . . 94
5.4 Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
APPENDICES
Appendix A: Negative stiffness of a buckled carbon nanotube in composite systems
via molecular dynamics simulation . . . . . . . . . . . . . . . . . . 110
Appendix B: Volume change for the pure elements . . . . . . . . . . . . . . . . . 126
Appendix C: Presentation slide . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
參考文獻 [1] M. K. Miller and editors. P. K. Liaw. Bulk-metallic glasses. Springer, Berlin, 2007.
[2] P. Yu and H. Y. Bai. Poisson’s ratio and plasticity in CuZrAl bulk metallic glasses. Materials Science and Engineering A, 485:1–4, 2008.
[3] S. Pauly, G. Liu, G. Wang, U. Kuhn, N. Mattern, and J. Eckert. Microstructural heterogeneities governing the deformation of Cu47.5Zr47.5Al5 bulk metallic glass composites. Acta Materialia, 57:5445–5453, 2009.
[4] S. Pauly, G. Liu, S. Gorantla, G. Wang, U. Kuhn, D. H. Kim, and J. Eckert. Criteria for tensile plasticity in Cu-Zr-Al bulk metallic glasses. Acta Materialia, 58:4883–4890, 2010.
[5] N. S. Barekar, S. Pauly, R. B. Kumar, U. Kuhn, B. K. Dhindaw, and J. Eckert. Structureproperty relations in bulk metallic Cu-Zr-Al Alloys. Materials Science and Engineering A, 527:5867–5872, 2010.
[6] Y. C. Wang and C. Y. Wu. Molecular dynamics simulation of Cu-Zr-Al metallic-glass films under indentation. Thin Solid Films, 561:114–119, 2014.
[7] Y. Waseda. The Structure of Non-crystalline Materials - Liquid and Amorphous Solids. McGraw-Hill, Boston, Massachusettsm, USA, 1980.
[8] Y. Q. Cheng and E. Ma. Atomic-level structure and structure-property relationship in metallic glasses. Progress in Materials Science, 26:379–473, 2011.
[9] S. W. Sheng, W. K. Luo, F. M. Alamgir, J. Bai, and E. Ma. Atomic packing and short-tomedium-range order in metallic glasses. Nature, 439:419–425, 2006.
[10] Y. Zhang, N. Mattern, and J. Eckert. Effect of uniaxial loading on the structural anisotropy and the dynamics of atoms of Cu50Zr50 metallic glasses within the elastic regime studied by molecular dynamics simulation. Acta Materialia, 59:4303–4313, 2011.
[11] F. Jiang, D. H. Zhang, L. C. Zhang, Z. B. Zhang, L. He, J. Sun, and Z. F. Zhang. Microstructure evolution and mechanical properties of Cu46Zr47Al7 bulk metallic glass composite containing CuZr crystallizing phases. Materials Science and Engineering A, 467:139–145, 2007.
[12] Y. Wu, H. Wang, H. H. Wu, Z. Y. Zhang, X. D. Hui, G. L. Chen, D. Ma, X. L. Wang, and Z. P. Lu. Formation of Cu-Zr-Al bulk metallic glass composites with improved tensile properties. Acta Materialia, 59:2928–2936, 2011.
[13] B. Sarac and J. Schroers. Designing tensile ductility in metallic glasses. Nature Communications, 4:2158, 2013.
[14] J. P. Chu, J. S. C. Jang, J. C. Huang, H. S. Chou, Y. Yang, J. C. Ye, Y. C.Wang, J.W. Lee, F. X. Liu, P. K. Liaw, Y. C. Chen, C. M. Lee, C. L. Li, and C. Rullyani. Thin film metallic glasses: Unique properties and potential applications. Thin Solid Films, 520(16):5097–5122, June 2012.
[15] C. N. Kuo, J. C. Huang, J. B. Li, J. S. C. Jang, C. H. Lin, and T. G. Nieh. Effects of B2 percipitate size on transformation-induced plasticity of Cu-Zr-Al glassy alloys. Journal of Alloys and Compounds, 590(453–458), 2014.
[16] F. Q. Meng, K. Tsuchiya, and Y. Yokoyama. Crystalline to amorphous transformation in Zr-Cu-Al alloys induced by high pressure torsion. Intermetallics, 37:52–58, 2013.
[17] J. Fornell, M. D. Baro, S. Surinach, A. Gebert, and J. Sort. The influence of deformationinduced martensitic transformation on the mechanical properties of nanocomposite Cu-Zr-(Al) systems. Advanced Engineering Materials, 13:57–63, 2011.
[18] J. Hwang, Z. H. Melgarejo, Y. E. Kalay, I. Kalay, M. J. Kramer, S. Stone, and P. M. Voyles. Nanoscale structure and structural relaxation in Zr50Cu45Al5 bulk metallic glass. Physical Review Letters, 108:195505, 2012.
[19] Z. T.Wang, J. Pan, Y. Li, and C. A. Schuh. Densification of strain hardening of a metallic glass under tension at room temperature. Physical Review Letters, 111:135504, 2013.
[20] J. Fornell, A. Concustell, A. L. Greer, S. Suri˜nach, M. D. Bar´o, and J. Sort. Effects of shot peening on the nanoindentation response of Cu47.5Zr47.5Al5 metallic glass. Journal of Alloys and Compounds, 586:S36 – S40, 2014.
[21] W. C. Oliver and G. M. Pharr. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinement to methodology. Journal of Materials Research, 19:3–20, 2004.
[22] U. Ramamurty, S. Jana, Y. Kawamura, and K. Chattopadhyay. Hardness and plastic deformation in a bulk metallic glass. Acta Materialia, 53:705–717, 2005.
[23] T. L. Cheung and C. H. Shek. Thermal and mechanical properties of Cu-Zr-Al bulk metallic glasses. Journal of Alloys and Compounds, 434–435:71–74, 2007.
[24] F. X. Liu, Y. F. Gao, and P. K. Liaw. Rate-Dependent Deformation Behavior of Zr-Based Metallic-Glass Coatings Examined by Nanoindentation. Metallurgical and Materials Transactions A, 39:1862–1867, 2008.
[25] F. Shimizu, S. Ogata, and J. Li. Theory of Shear Banding in Metallic Glasses and Molecular Dynamics Calculations. Materials Transactions, 48:2923–2927, 2007.
[26] Q.-K. Li and M. Li. Atomistic simulations of correlations between volumetric change and shear softening in amorphous metals. Physical Review B, 78:094101, 2007.
[27] A. R. Leach. Molecular modeling: principles and applications, 2nd Ed. Prentice Hall, New York, 2001.
[28] Y. C. Wang, C. Y. Wu, J. P. Chu, and P. K. Liaw. Indentation Behavior of Zr-Based Metallic-Glass Films via Molecular-Dynamics Simulations. Metallurgical and Materials Transactions A, 41:3010–3017, September 2010.
[29] Y. Shi and M. L. Falk. Simulations of nanoindentation in a thin amorphous metal film. Thin Solid Films, 515:3179–3182, 2007.
[30] Y. Shi and M. L. Falk. Stress-induced structural transformation and shear banding during simulated nanoindentation of a metallic glass. Acta Materialia, 55:4317–4324, 2007.
[31] A. K. Nair, E. Parker, P. Gaudreau, D. Farkas, and R. D. Kriz. Size effects in indentation response of thin films at the nanoscale: A molecular dynamics study. International Journal of Plasticity, 24:2016–2031, 2008.
[32] G. H. Gilmer. Simulations of vapor-deposition by molecular-dynamics. Abstracts of Papers of the American Chemical Society, 175:72–72, 1978.
[33] G. H. Gilmer, M. H. Grabow, and A. F. Bakker. Modeling of epitaxial growth. Material Science and Engineering B, 6:101–112, 1990.
[34] K. H. Muller. Cluster-beam deposition of thin-films - a molecular-dynamics simulation. Journal of Applied Physics, 61:2516–2532, 1987.
[35] R. Biswas, G. S. Grest, and C. M. Soukoulis. Molecular- dynamics simulation of cluster and atom deposition on silicon (111). Physics Review B, 38:8154–8162, 1988.
[36] J. Jortner. Cluster-size effects revisited. Journal de Chimie Physique et de Physico-Chimie Biologique, 92:205–225, 1995.
[37] H. W. Lu, J. Q. Xie, and J. Y. Feng. Simulation study on Si and Ge film growth by cluster deposition. Nuclear Instruments & Methods in Physics Research Section B–Beam Interactions with Materials and Atoms, 170:71–78, 2000.
[38] J.W. Kang, K. S. Choi, J. C. Kang, E. S. Kang, K. R. Byun, and H. J. Hwang. Cluster deposition study by molecular dynamics simulation: Al and Cu cluster. Journal of Vacuum Science & Technology A, 19(1902–1906), 2001.
[39] J. W. Kang and H. J. Hwang. Molecular dynamics simulations of energetic aluminum cluster deposition. Computational Materials Science, 23(105–110), 2002.
[40] A. Dzhurakhalov, A. Rasulov, T. Hoof, and M. Hou. Ag-Co clusters deposition on Ag (100): an atomic scale study. European Physical Journal D, 31:53–61, 2004.
[41] T. Hoof, A. Dzhurakhalov, and M. Hou. Interface formation by low energy deposition of core-shell Ag-Co nanoclusters on Ag (100). European Physical Journal D, 43:159–163, 2007.
[42] X. W. Zhou, R. A. Johnson, and H. N. G. Wadley. A molecular dynamics study of nickel vapor deposition: temperature, incident angle, and adatom energy effects. ACTA Materialia, 45:1513–1524, 1997.
[43] M. Kubo, Y. Qumi, H. Takaba, A. Chatterjee, and A. Meyamoto. Chemical vapor deposition process on the ZSM-5 (010) surface as investigated by molecular dynamics. Journal of Physics Chemistry B, 103(1876–1880), 1999.
[44] M. Yamashita. Fundamental characteristics of built-in high-frequency coil-type sputtering apparatus. Journal of Vacuum Science & Technology A – Vacuum Surfaces and Films, 7:151–158, 1989.
[45] S. M. Rossnagel and J. Hopwood. Magnetron sputter-deposition with high-levels of metal ionization. Applied Physics Letters, 63:3285–3287, 1993.
[46] S. M. Rossnagel and J. Hopwood. Metal-ion deposition from ionized magnetron sputtering discharge. Journal of Vacuum Science & Technology B, 12:449–453, 1994.
[47] N. A. Kubota, D. J. Economou, and S. J. Plimpton. Molecular dynamics simulations of low-energy (25-200 ev) argon ion interactions with silicon surfaces: sputter yields and product formation pathways. Journal of Applied Physics, 83(4055–4063), 1998.
[48] D. G. Coronell, D. E. Hansen, A. F. Voter, C. L. Liu, X. Y. Liu, and J. D. Kress. Molecular dynamics based ion surface interaction models for ionized physical vapor deposition feature scale simulations. Applied Physics Letters, 73:3860–3862, 1998.
[49] U. Hansen and A. Kersch. Reaction rates for ionized physical vapor deposition modeling from molecular dynamics calculations: effect of surface roughness. Physical Review B, 60:14417–14421, 1999.
[50] C. C. Fang, F. Jones, R. R. Kola, G. K. Celler, and V. Prasad. Stress and microstructure of sputter deposited thin films molecular dynamics simulations and experiment. Journal of Vacuum Science & Technology B, 11:2947–2952, 1993.
[51] C. C. Fang, F. Jones, and V. Presad. Effect of gas impurity and ion-bombardment on stresses in sputter deposited thin films - a molecular dynamics approach. Journal of Applied Physics, 74:4472–4482, 1993.
[52] C. C. Fang, V. Presad, and F. Jones. Molecular dynamics modeling of microstructure and stresses in sputter deposited thin films. Journal of Vacuum Science & Technology A-Vacuum Surface and Films, 11:2778–2789, 1993.
[53] C. A. Schuh, T. C. Hufnagel, and U. Ramamurty. Mechanical behavior of amorphous alloys. Acta Materialia, 55:4067–4109, 2007.
[54] V. Keryvin, K. E. Prasad, Y. Gueguen, J. Sangleboeuf, and U. Ramamurty. Temperature dependence of mechanical properties and pressure sensitivity in metallic glasses below glass transition. Philosophical Magazine, 88(1773—1790), 2008.
[55] J. P. Chu, C. T. Liu, T. Mahalingam, S. F. Wang, M. J. O’Keefe, B. Johnson, , and C. H. Kuo. Annealing-induced full amorphization in a multicomponent metallic film. Phys. Rev. B, 69:113410, 2004.
[56] F. X. Liu, P. K. Liaw, W. H. Jiang, C. L. Chiang, Y. F. Gao, Y. F. Guan, J. P. Chu, and P. D. Rack. Fatigue-resistance enhancements by glass-forming metallic films. Materials Science and Engineering A, 468–470:246–252, 2007.
[57] C. L. Chiang, J. P. Chu, F. X. Liu, P. K. Liaw, and R. A. Buchanan. A 200 nm thick glass-forming metallic film for fatigue-property enhancements. Applied Physics Letter, 88:131902, 2006.
[58] R. B. Schwarz and W. L. Johnson. Formation of an amorphous alloy by solid-state reaction of the pure polycrystalline metals. Physical Review Letters, 51:415–418, 1983.
[59] S. H. Liang, J. H. Li, and B. X. Liu. Solid-state amorphization of an immiscible Nb-Zr system simulated by molecular dynamics. Computational Materials Science, 42:550–557, 2008.
[60] J. B. Liu, Z. C. Li, B. X. Liu, G. Kresse, and J. Hafner. Stability of a nonequilibrium phase in an immiscible Ag-Ni system studied by ab initio calculations and ion-beammixing experiment. Phys. Rev. B, 63:132205, 2001.
[61] Y. Shi and M. L. Falk. Structural transformation and localization during simulated nanoindentation of a noncrystalline metal film. Applied Physics Letters, 86:011914, 2005.
[62] J. J. Kim, Y. Choi, S. Suresh, and A. S. Argon. Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature. Science, 295(654—657), 2002.
[63] T. G. Nieh and J. Wadsworth. Bypassing shear band nucleation and ductilization of an amorphous-crystalline nanolaminate in tension. Intermetallics, 16:1156–1159, 2008.
[64] D. Frenkel and B. Smit. Understanding Molecular Simulation: From Algorithms to Applications. Academic Press, San Diego, USA, 2002.
[65] M. E. Tuckerman. Statistical Mechanics: Theory and Molecular Simulation. Cambridge University Press, New York, 2010.
[66] S. Nos´e and M. L. Klein. Constant-pressuremolecular dynamics for molecular systems. Molecular Physics, 50:1055, 1983.
[67] S. Nos´e. A unified formulation of the constant-temperature molecular dynamics methods. Journal of Chemical Physics, 81:511, 1984.
[68] W. G. Hoover. Canonical dynamics—Equilibrium phase-space distributions. Physical Review A, 31:1695, 1985.
[69] P. M. Gullett, M. F. Horstemeyer, M. I. Baskes, and H. Fang. A deformation gradient tensor and strain tensors for atomistic simulations. Modelling and Simulation in Materials Science and Engineering, 16:01500, 2007.
[70] L. Berthier and G. Biroli. Theoretical perspective on the glass transition and amorphous materials. Reviews of Modern Physics, 83:587–645, 2011.
[71] S. Plimpton. Fast parallel algorithms for short-range molecular-dynamics. Journal of Computational Physics, 117:1–19, 1995. http://lammps.sandia.gov.
[72] R. D. Cook, D. S. Malkus, and M. E. Plesha. Concepts and Applications of Finite Element Analysis, 3rd Ed. John Wily & Sons, New York, 1989.
[73] F. F. Abraham, R. Walkup, H. Gao, M. Duchaineau, T. D. De La Rubia, and M. Seager. Simulating materials failure by using up to one billion atoms and the world’s fastest computer: Brittle failure. Proceedings of National Academy of Sciences, 99:5777–5782, 2002.
[74] F. F. Abraham, R. Walkup, H. Gao, M. Duchaineau, T. D. De La Rubia, and M. Seager. Simulating materials failure by using up to one billion atoms and the world’s fastest computer: Work-hardening. Proceedings of National Academy of Sciences, 99:5783–5787, 2002.
[75] The NCKU HPC cluster website. http://cc:ncku:edu:tw/files/11-1255-3345.php.
[76] the IBM Blue Gene Team Allen et al. Glue Gene: A vision for protein science using a petaflop supercomputer. IBM Systems Journal, 40:310–327, 2001.
[77] The CUDA website. http://www.nvidia.com/object/cuda_home_new.html.
[78] H. C. Lin, J. G. Chang, S. P. Ju, and C. C. Hwang. A general consideration of incident impact energy accumulation in molecular dynamics thin film simulations - a new approach using thermal control layer marching algorithm. Proceedings of the Royal Society A, 461:3977–3998, 2005.
[79] F. Cleri and V. Rosato. Tight-binding potentials for transition metals and alloys. Physical Review B, 48:22–33, 1993.
[80] M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, New York, NY, USA, 1987.
[81] T. Iwasaki. Molecular dynamics study of adhesion strength and diffusion at interfaces between interconnect materials and underlay materials. Computational Mechanics, 25:78–86, 2000.
[82] K. H. Muller. Ion-beam-induced epitaxial vapor-phase growth: a molecular dynamics study. Physical Review B, 35:7906–7913, 1987.
[83] C. Kittel. Introduction to Solid State Physics. Wiley, New York, 1966.
[84] G. Simmons and H. Wang. Single crystal elastic constants and calculated aggregated properties: a handbook, 2nd Ed. The M.I.T. Press, Cambridge, MA, 1971.
[85] N. Mattern, J. Bednarcik, S. Pauly, G. Wang, J. Das, and J. Eckert. Structural evolution of Cu-Zr metallic glasses under tension. Acta Materialia, 57:4133–4139, 2009.
[86] P. Yu, H.Y. Bai, M.B. Tang, and W.L. Wang. Excellent glass-forming ability in simple Cu50Zr50-based alloys. Journal of Non-Crystalline Solids, 351:1328–1332, 2005.
[87] Y. Q. Cheng, E. Ma, and H. W. Sheng. Atomic level structure in multicomponent bulk metallic glass. Physical Review Letters, 102:245501, 2009.
[88] D. A. Porter and K. E. Easterling. Phase Transformations in Metals and Alloys, 2nd Ed. CRC Press, Boca Raton, 2004.
[89] A. Castellero, T. A. Baser, J. Das, P. Matteis, J. Eckert, L. Battezzati, and M. Baricco. Role of crystalline precipitates on the mechanical properties of (Cu0.50Zr0.50)100-xAlx (x=4, 5, 7) bulk metallic glasses. Journal of Alloys and Compounds, 509S:S99–S104, 2011.
[90] H. Amara, J.-M. Roussel, C. Bichara, J.-P. Gaspard, and F. Ducastelle. Tight-binding potential for atomistic simulations of carbon interacting with transition metals: Application to the Ni-C system. Physical Review B, 79:014109, 2009.
[91] S. Chen, L. Liu, and T. Wang. Size dependent nanoindentation of a soft film on a hard substrate. Acta Materialia, 52:1089–1095, 2004.
[92] S. M. Chathoth and K. Samer. Stokes-Einstein relation in dense metallic glass-forming melts. Applied Physics Letters, 97:221910, 2010.
[93] R. S. Lakes. Extreme damping in compliant composites with a negative-stiffness phase. Philosophical Magazine Letters, 81:95–100, 2001.
[94] R. S. Lakes, T. Lee, A. Bersie, and Y. C.Wang. Extreme damping in composite materials with negative-stiffness inclusions. Nature, 410:565–567, 2001.
[95] T. Jaglinski, D. Kochmann, D. Stone, and R. S. Lakes. Composite materials with viscoelastic stiffness greater than diamond. Science, 315:620–622, 2007.
[96] H. W. Yap, R. S. Lakes, and R. W. Carpick. Mechanical instabilities of individual multiwalled carbon nanotubes under cyclic axial compression. Nano Letters, 7:1149–1154, 2007.
[97] H. W. Yap, R. S. Lakes, and R. W. Carpick. Negative stiffness and enhanced damping of individual multiwalled carbon nanotubes. Physical Review B, 77:045423, 2008.
[98] J. M. T. Thompson. ‘Paradoxical’ mechanics under fluid flow. Nature, 296:135–137, 1982.
[99] F. Falk. Model free energy, mechanics and thermodynamics of shape memory alloys. Acta Metall., 28:1773–1780, 1980.
[100] R. S. Lakes. Extreme damping in composite materials with a negative stiffness phase. Physical Review Letters, 86:2897–2900, 2001.
[101] R. S. Lakes and W. J. Drugan. Dramatically stiffer elastic composite materials due to a negative stiffness phase. Journal of the Mechanics and Physics of Solids, 50:979–1009, 2002.
[102] Y. C. Wang and R. S. Lakes. Extreme thermal expansion, piezoelectricity, and other coupled field properties in composites with a negative stiffness phase. Journal of Applied Physics, 90:6458, 2001.
[103] Y. C. Wang and C. C. Ko. Stress analysis of a two-phase composite having a negativestiffness inclusion in two dimensions. Interaction and Multiscale Mechanics, 2:321, 2009.
[104] W. J. Drugan. Elastic Composite Materials Having a Negative Stiffness Phase Can Be Stable. Physical Review Letters, 98:055502, 2007.
[105] D. M. Kochmann and W. J. Drugan. Dynamic stability analysis of an elastic composite material having a negative-stiffness phase. Journal of the Mechanics and Physics of Solids, 57(1122–1138), 2009.
[106] E. Ernst. On the Existence of Positive Eigenvalues for the Isotropic Linear Elasticity System with Negative Shear Modulus. Communications In Partial Differential Equations, 29:1745–1753, 2004.
[107] X. Shang and R. S. Lakes. Stability of Elastic Material with Negative Stiffness and Negative Poisson’s Ratio. Physica Status Solidi B, 244:1008–1026, 2007.
[108] R. S. Lakes and Wojciechowski. Negative compressibility, negative Poisson’s ratio, and stability. Physica Status Solidi (b), 245:545–551, 2008.
[109] Y. C.Wang and R. S. Lakes. Extreme stiffness systems due to negative stiffness elements. American Journal of Physics, 72:40–50, 2004.
[110] Y. C. Wang. Influences of negative stiffness on a two-dimensional hexagonal lattice cell. Philosophical Magazine, 87:3671–3688, 2007.
[111] K. Yoshimoto, T. S. Jain, K. van Workum, P. F. Nealey, and J. de Pablo. Mechanical heterogeneities in model polymer glasses at small length scales. Physical Review Letters, 93:175501, 2004.
[112] N. R. Raravikar, P. Keblinski, A. M. Rao, M. S. Dresselhaus, L. S. Schadler, and P. M. Ajayan. Temperature dependence of radial breathing mode Raman frequency of singlewalled carbon nanotubes. Physical Review B, 66:235424, 2002.
[113] D. W. Brenner. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Physics Review B, 42:9458, 1990.
[114] D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. Journal of Physics: Condensed Matter, 14:783, 2002.
[115] J. Lu, C. Hwang, Q. Kuo, and Y. Wang. Mechanical buckling of multi-walled carbon nanotubes: The effects of slenderness ratio. Physica E: Low-dimensional Systems and Nanostructures, 40(5):1305–1308, March 2008.
[116] J. M. Lu, Y. C. Wang, J. G. Chang, M. H. Su, and C. C. Hwang. Molecular-Dynamic Investigation of Buckling of Double-Walled Carbon Nanotubes under Uniaxial Compression. Journal of the Physical Society of Japan, 77(4):044603, April 2008.
[117] C. C. Hwang, Y. C. Wang, Q. Y. Kuo, and J. M. Lu. Molecular dynamics study of multiwalled carbon nanotubes under uniaxial loading. Physica E, 42:775, 2010.
[118] J. Y. Huang, F. Ding, K. Jiao, and B. I. Yakobson. Real time microscopy, kinetics, and mechanism of giant fullerene evaporation. Physical Review Letters, 99:175503, 2007.
[119] J. Tersoff. New empirical model for the structural properties of siliconm. Physical Review Letters, 56:632, 1986.
[120] D. C. Rapaport. The Art of Molecular Dynamics Simulation. Cambridge University Press, London, UK, 1997.
[121] X. W. Zhou, R. A. Johnson, and H. N. G. Wadley. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Physical Review B, 69:144113, 2004.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-09-03起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw