進階搜尋


下載電子全文  
系統識別號 U0026-3108201117313300
論文名稱(中文) 鋅同位素在台灣南部二仁溪中的來源與分布特性
論文名稱(英文) Sources and distribution of zinc isotopes in Erren River
校院名稱 成功大學
系所名稱(中) 地球科學系碩博士班
系所名稱(英) Department of Earth Sciences
學年度 99
學期 2
出版年 100
研究生(中文) 郭天樂
研究生(英文) Tian-Yue Kuo
學號 L46984064
學位類別 碩士
語文別 英文
論文頁數 75頁
口試委員 指導教授-游鎮烽
口試委員-楊懷仁
口試委員-何恭算
中文關鍵字 鋅同位素  河水化學組成  人為污染  工廠廢水 
英文關鍵字 Zinc isotope  river water  anthropogenic pollution  industrial wastewater 
學科別分類
中文摘要 鋅同位素在許多作用發生的過程中會產生分化,其中包括化學風化與人為污染。本研究為了系統性的檢驗鋅同位素在這些過程中的分化效應,以台灣南部的二仁溪河水探討鋅濃度以及鋅同位素的空間分布,同時利用二仁溪以南的典寶溪中,工廠廢水中重金屬濃度以及鋅同位素為輔佐討論人為污染的來源。本研究系統性的採集上游至河口空間剖面的河水樣品,而樣品中66Zn/64Zn的比值(本研究表示為δ66Zn)是經過化學層析分離後再利用多接收器感應耦合電漿質譜儀(MC-ICP-MS, Neptune)進行測量所得。其中高精確度的鋅同位素分析方法則是透過結合了標準品與樣品夾擠法(standard-sample bracketing technique, SSB)以及用銅作為標準添加物的外部修正法(empirical external normalization method, EEN)做質量偏移的修正。本研究之分析精確度可達0.29‰(2σ)。
分析二仁溪河水之化學組成可對二仁溪之自然風化及人為污染產生的影響提供基礎資訊。二仁溪中鋅同位素分布的範圍落在 -0.73 ~ 1.77‰,而從二仁溪中鋅濃度的高含量以及鋅同位素比值可推得此流域受到很嚴重的工業污染,包括周圍的電鍍業工廠以及金屬表面處理工廠。此結果更進一步從典寶溪的工廠廢水中鋅和其他微量元素間的相關性以及鋅同位素所證實。此外,利用不同類型的工廠廢水中鋅同位素的分布,可進一步區分不同的工廠廢水污染來源。綜合本研究結果可知此研究區域嚴重受到人為污染的影響,並說明了鋅同位素對於分辨河水中不同來源的人為污染具有相當高的靈敏度,證實為一良好示蹤劑。
英文摘要 To examine systematically of potential Zn isotope fractionation associated with various processes, including chemical weathering and anthropogenic pollution, we have studied the spatial distribution of zinc (Zn) and Zn isotopes in the Erren River (ERR) catchments in Southern Taiwan. Also, we use the heavy metal concentrations and Zn isotopes in the industrial wastewaters of Dianbao River, which is located in the southern part of the Erren River, to discuss the sources of anthropogenic pollution. Specimens of river waters were sampled along geographical transects from the headwaters to the estuary during monsoon season, as well as samples of major tributaries (Sanyegong, Shenkengtz, Gangweigou, Songtzjiao and Niouchoupu Rivers). Major and trace elements were analyzed by ICP-OES and HR-ICP-MS, where the 66Zn/64Zn ratios (expressed as !66Zn) were measured by MC-ICP-MS (Neptune, Thermo-Fisher Scientific) after column purification. A high-precision Zn isotopic determination was established by combining the standard-sample bracketing (SSB) procedures and the external normalization method, Cu was used as the internal dopant for mass discrimination correction. The long-term external reproducibility achieved is better than 0.29‰ (2").
Analyzing the chemical composition of ERR waters provides basic information for the impact of the natural weathering and anthropogenic pollution in ERR. In the ERR, the dissolved Zn contents ranged between 0.14 and 26.59 μM and the dissolved !66Zn values vary from -0.73 to 1.77‰. The high Zn content and the large variation of Zn isotope values in the ERR is probably due to serious industrial pollution from surrounding factories, including the electroplating and metal surface treatment industries. This is supported by correlation between Zn and other trace elements and the distribution of Zn isotopes in the Dianbao River industrial wastewaters. In addition, using the distribution of Zn isotopes in the different types of industrial wastewaters can further distinguish different industrial wastewater pollution sources. Sum up the results of this study shows that the ERR basin severely affected by anthropogenic pollution, and decipher that Zn isotopes have high sensitivity to separate different anthropogenic pollution sources in river water, proved to be a good tracer.
論文目次 Table of Contents
摘要 I
Abstract II
致謝 IV
Table of Contents V
List of Tables VII
List of Figures VIII
Chapter 1. Introduction…………………………………………………………………...1
1.1 Basic geochemical behavior of Zn………………………………………….....1
1.2 Applications of Zn isotopes in the natural system…………………………2
1.3 Zn isotopic compositions in anthropogenic sources………………………9
1.4 The aims of this study…………………………………………………………..12
Chapter 2. Study Area…………………………………………………………………....13
2.1 Description of study area and sampling………………………………….…13
2.1.1 Geological background of the Erren basin…………………………..13
2.1.2 Sample collection………………………………………………………….16
Chapter 3. Methodology………………………………………………………………...18
3.1 Chemical reagents and standards……………………………………………18
3.2 Chemical pretreatment and instrumental analysis……………………….18
3.2.1 Elemental analysis………………………………………………………...18
3.2.2 Zn isotopic analysis……………………………………………………….20
3.2.2.1 Purification of Zn — column chromatography……………….20
3.2.2.2 Introduction of instruments…………………………………..…23
3.2.2.3 Corrections for instrumental mass bias……………………….28
3.2.2.4 Precision and accuracy…………………………………………….32
Chapter 4. Results and Discussion…………………………………………………...34
4.1 Elemental concentrations and Zn isotopic compositions in river water...34
4.1.1 Major element compositions and distribution……………………..34
4.1.2 Seasalt contribution.……………………………………..………………38
4.1.3 Rock weathering behavior……………………………………………….42
4.1.4 Trace elements and Zn isotopes……………………………………….44
4.2 Zn and Zn isotopic compositions in industrial wastewaters……………49
4.3 Using Zn isotopes as tracer to distinguish anthropogenic sources…..54
Chapter 5. Conclusions……………………………………………………………….....62
References 64

List of Tables
Chapter 2
Table 2.1 The properties of the Erren River samples (Wang and Chen, 2010)...16
Chapter 3
Table 3.1 Separation protocol of AG MP-1M for the Zn isotopes………..…….21
Table 3.2 List of potential interferences on Zn isotopes…………………………24
Table 3.3 Operating conditions and parameters for Neptune MC-ICP-MS…..27
Table 3.4 Cup configuration of the Zn isotopes used in this study……………27
Chapter 4
Table 4.1 Major element concentrations in water samples collected from the ERR (Wang and Chen, 2010).…35
Table 4.2 Concentrations of major elements in dissolved loads. Also shown is the relative seasalt contribution for each sample…41
Table 4.3 Trace element contents and Zn isotopic compositions in the Erren River (Wang and Chen, 2010).…47
Table 4.4 Trace element concentrations and Zn isotopic compositions in wastewaters from Dianbao River (Tu and You, 2010)…51

List of Figures
Chapter 1
Figure 1.1 The principal processes inducing Zn isotope fractionation………...3
Figure 1.2 Summary of published δ66Zn data of sphalerite and galena (Sonke et al., 2008)…6
Figure 1.3 Distribution of δ66Zn values in ferromanganese nodules with respect to the distribution of biological primary productivity (Maréchal et al., 2000) …7
Figure 1.4 The distributions of δ66Zn in various materials (Cloquet et al., 2006)...10
Chapter 2
Figure 2.1 Geological map and sample location in the ERR catchment.………14
Chapter 3
Figure 3.1 A picture of ICP-OES (iCap, Thermo Scientific) and HR-ICP-MS (Element 2, Thermo Scientific) at EDSRC…19
Figure 3.2 Elution scheme of Zn purification on AG MP-1M resin……………..22
Figure 3.3 Schematic of MC-ICP-MS (Neptune, Thermo Scientific) at EDSRC..23
Figure 3.4 Two introduction systems used in this study………………………...25
Figure 3.5 A typical drift of Zn isotopic ratios in mass bias of 66Zn/64Zn ratio...29
Figure 3.6 Correction for drift in instrumental mass bias by the SSB method.30
Figure 3.7 Schematic diagram of the EEN mass bias correction for precise Cu isotopic measurement (Mason et al., 2004)…31
Figure 3.8 Results of repeat measurements of Zn isotopes for IRMM-3702…33
Chapter 4
Figure 4.1 Plot of Mg versus Ca in the ERR basin………………………………….36
Figure 4.2 The concentrations of major ions from the upstream to the estuary in the ERR…37
Figure 4.3 Non-seasalt concentrations of the major elements in the ERR waters...40
Figure 4.4 The plot of Mg/Na versus Ca/Na in the ERR………………………….43
Figure 4.5 Distributions of trace element concentrations in the Erren River..45
Figure 4.6 Variations of riverine Zn concentrations and isotope compositions in the ERR catchment…48
Figure 4.7 Correlation plots between Cu, Cr, Cd, Pb and Zn in ERR waters…52
Figure 4.8 Plot of Zn isotopic composition versus (a) Pb/Zn and (b) 1/Zn in the five industrial wastewaters…53
Figure 4.9 The plot of δ66Zn and Si/Zn in the ERR waters………………………54
Figure 4.10 The plot of δ66Zn versus Cr/Zn in the ERR waters………………...55
Figure 4.11 Zn isotope compositions as a function of Cu/Zn molar ratios for the samples in Seine River…56
Figure 4.12 The correlation plot between δ66Zn and Cl/Na in the ERR river waters…58
Figure 4.13 The plot of δ66Zn and 1/Zn in the ERR waters and industrial wastewaters…60
Figure 4.14 Riverine δ66Zn and 1/Zn in the ERR…………………………………..61
參考文獻 李欣珮 (2008) 氣候與圍岩差異對台灣三個河源上游化學風化的影響。國立成功大學地球科學所碩士論文,共101頁。

張育德 (1996) 台灣西南部曾文溪及二仁溪地區泥岩之地球化學。國立台灣大學海洋研究所碩士論文,共136頁。

鐘小良 (2002) 二仁溪河水地球化學和同位素初探。國立成功大學地球科學所碩士論文,共85頁。

Albarède, F., 2004. The stable isotope geochemistry of copper and zinc. Rev. Mineral. Geochem. 55, 409–427.

Albarède, F., Beard, B., 2004. Analytical methods for non-traditional isotopes. Geochemistry of Non-traditional Stable Isotopes, 113–152.

Albarède, F., Télouk, O., Blichert-Toft, J., Boyet, M., Agranier, A., Nelson, B., 2004. Precise and accurate isotopic measurements using multiple-collector ICPMS. Geochimica et Cosmochimica Acta 68, 2725-2744.

Balistrieri, L. S., Borrok, D. M., Wanty, R. B., Ridley, W. I., 2008. Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxides: experimental mixing of acid rock drainage and pristine river water. Geochim. Cosmochim. Acta 72, 311-328.

Bentahila, Y., Othman, D. B., Luck, J.-M., 2008. Strontium, lead and zinc isotopes in marine cores as tracers of sedimentary provenance: A case study around Taiwan orogen. Chemical Geology 248, 62-82.

Bermin, J., Vance, D., Archer, C., Statham, P. J., 2006. The determination of the isotopic composition of Cu and Zn in seawater. Chem. Geol. 226, 280–297.

Bigalke, M., Weyer, S., Kobza, J., Wilcke, W., 2010. Stable Cu and Zn isotope ratios as tracers of sources and transport of Cu and Zn in contaminated soil. Geochim. Cosmochim. Acta 74, 6801-6813.

Birch, L., Hanselmann, K. W., Bachofen, R., 1996. Heavy metal conservation in Lake Cadagno sediments: historical records of anthropogenic emissions in a meromictic alpine lake. Wat. Res. 30 (3), 679-687.

Borrok, D. M., Gieré, R., Ren, M., Landa, E. R., 2010. Zinc isotopic composition of particulate matter generated during the combustion of coal and coal + tire-derived fuels. Environ. Sci. Technol. 44, 9219-9224.

Borrok, D. M., Nimick, D. A., Wanty, R. B., Ridley, W. I., 2008. Isotopic variations of dissolved copper and zinc in stream waters affected by historical mining. Geochim. Cosmochim. Acta 72, 329-344.

Borrok, D. M., Wanty, R. B., Ridley, W. I., Lamothe, P. J., Kimball, B. A., Verplanck, P. L., Runkel, R. L., 2009. Application of iron and zinc isotopes to track the sources and mechanisms of metal loading in a mountain watershed. Applied Geochemistry 24, 1270-1277.

Borrok, D. M., Wanty, R. B., Ridley, W. I., Wolf, R., Lamothe, P. J., Adams, M., 2007. Separation of copper, iron, and zinc from complex aqueous solutions for isotopic measurement. Chemical Geology 242, 400-414.

Bruins, M. R., Kapil, S., Oehme, F. W., 2000. Microbial resistance to metals in the environment. Ecotoxicol. Environ. Saf. 45, 198–207.

Budd, P., McGill, R. A. R., Scaife, B., Lythgoe, P., Pollard, A. M., 1999. Zinc isotope fractionation in liquid brass (Cu-Zn) alloy: Potential environmental and archaeological applications. In Geoarcheology: Exploration, Environments, Resources. (Pollard, A. M., Ed.), Geological Society of London Special Publication: London 147, 153.

Chen, C. T., Hung, J. J., 1987. Acid rain and lake acidification in Taiwan. Proc. Natl. Sci. Counc. (ROC) 11, 436-442.

Chen, J. B., Gaillardet, J., Louvat, P., 2008. Zinc isotopes in the Seine River waters, France: a probe of anthropogenic contamination. Environ. Sci. Technol. 42, 6494-6501.

Clayton, R., Andersson, P., Gale, N.H., Gillis, C., Whitehouse, M.J., 2002. Precise determination of the isotopic composition of Sn using MC-ICP-MS. Journal of Analytical Atomic Spectrometry 17 (10), 1248–1256.

Cloquet, C., Carignan, J., Libourel, G., 2006. Isotopic composition of Zn and Pb atmospheric depositions in an urban/periurban area of Northeastern France. Environ. Sci. Technol. 40, 6594-6600.

Cloquet, C., Carignan, J., Lehmann, M. F., Vanhaecke, F., 2008. Variation in the isotopic composition of zinc in the natural environment and the use of zinc isotopes in biogeosciences: a review. Anal. Bioanal. Chem. 390, 451-463.

Dolgopolova, A., Weiss, D. J., Seltmann, R., Kober, B., Mason, T. F. D., Coles, B., Stanley, C. J., 2006. Use of isotope ratios to assess sources of Pb and Zn dispersed in the environment during mining and ore processing within the Orlovka-Spokoinoe mining site (Russia). Applied Geochemistry 21, 563-579.

Ercal, N., Gurer-Orhan, H., Aykin-Burns N., 2001. Toxic metals and oxidative stress part I: mechanisms involved in metal induced oxidative damage. Curr. Top. Med. Chem. 1, 529–539.

Fisher, N. S., 1986. On the reactivity of metals for marine phytoplankton. Limnol. Oceanogr. 31, 443–449.

Gaillardet, J., Dupre, B., Allegre, C. J., Negrel, P., 1997. Chemical and physical denudation in the Amazon River Basin. Chem. Geol. 142, 141-173.

Gaillardet, J., Dupre, B., Louvat, P., Allegre, C.J., 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159, 3–30.

Galloway, J. N., Likens, G. E., Keene, W. C., Miller, J. M., 1982. The composition of precipitation in remote areas of the world. J. Geophy. Res. 87, 8771-8786.

Gibbs, R. J., 1970. Mechanisms controlling world water chemistry. Science 170, 1088-1090.

Gioia, S., Weiss, D., Coles, B., Arnold, T., Babinski, M., 2008. Accurate and precise zinc isotope ratio measurements in urban aerosols. Anal. Chem. 80 (24), 9776–9780.

Gordon, R. B., Graedel, T. E., Bertram, M., Fuse, K., Lifset, R., Rechberger, H., Spatari, S., 2003. The characterization of technological zinc cycles. Res. Cons. Recycl. 39 (2), 107-135.

Graedel, T. E., van Beers, D., Bertram, M., Fuse, K., Gordon, R. B., Gritsinin, A., Harper, E. M., Kapur, A., Klee, R. J., Lifset, R., Memon, L., Spatari, S., 2005. The multilevel cycle of anthropogenic zinc. J. Ind. Ecol. 9 (3), 67-90.

Halliday, A. N., Lee, D. C., Christensen, J. N., Rehkämper, M., Yi, W., Luo, X. Z., Hall, C. M., Ballentine, C. J., Pettke, T., Stirling, C., 1998. Applications of multiple collector-ICPMS to cosmochemistry, geochemistry, and paleoceanography. Geochim. Cosmochim. Acta 62, 919-940.

Halliday, A. N., Lee, D. C., Christensen, J. N., Walder, A. J., Freedman, P. A., Jones, C. E., Hall, C. M., Yi, W., Teagle, D., 1995. Recent developments in inductively coupled plasma magnetic sector multiple collector mass spectrometry. Int. J. Mass Spectrom. Ion Processes 146, 21-33.

John, S. G., Genevieve Park, J., Zhang, Z., Boyle, E. A., 2007. The isotopic composition of some common forms of anthropogenic zinc. Chem. Geol. 245 (1-2), 61–69.

Jouvin, D., Louvat, P., Juillot, F., Maréchal, C. N., Benedetti, M. F., 2009. Zn isotopic fractionation: why organic matters. Environ. Sci. Technol. 43 (15), 5747-5754.

Juillot, F., Maréchal, C., Morin, G., Jouvin, D., Cacaly, S., Telouk, P., Benedetti, M. F., Ildefonse, P., Sutton, S., Guyot, F., Brown, G. E., 2011. Contrasting isotopic signatures between anthropogenic and geogenic Zn and evidence for post-depositional fractionation processes in smelter-impacted soils from Northern France. Geochim. Cosmochim. Acta 75, 2295-2308.

Longerich, H. P., Fryer, B. J., Strong, D. F., 1987. Determination of lead isotope
ratio by inductively coupled plasma mass spectrometry (ICP-MS). Spectrochimica Acta Part B 42, 39-48.

Luck, J. M., Ben Othman, D., Albarède, F., Télouk, P., 1999. Pb, Zn and Cu isotopic variation and trace elements in rain. In: Geochemistry of the Earth’s Surface (ed. Ármannsson). Rotterdam, Balkema, 199–202.

Lupascu, N., Chirila, E., Munteanu, M., 2009. Heavy metal contaminants in organic fertilizers. Ovidius University Annals of Chemistry 20, 232-234.

Malinovsky, D., 2004. Fractionation of Fe and Zn Isotopes: Methods and Some
Applications in Aqueous Geochemistry. PhD dissertation, Lulea University.

Maréchal, C., Nicolas, E., Douchet, C., Albarède, F., 2000. Abundance of zinc isotopes as a marine biogeochemical tracer. Geochem. Geophys. Geosystems 1, 1999BC000029.

Maréchal, C., Telouk, P., Albarède, F., 1999. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem. Geol. 156, 251–273.

Mason, T. F. D., Weiss, D. J., Chapman, J. B., Wilkinsion, J. J., Tessalina, S. G., Spiro, B., Horstwood, M. S. A., Spratt, J., Coles, B. J., 2005. Zn and Cu isotopic variability in the Alexandrinka volcanic-hosted massive sulphide (VHMS) ore deposit, Urals, Russia. Chem. Geol. 221, 170-187.

Mason, T. F. D., Weiss, D. J., Horstwood, M., Parrish, R. R., Russell, S. S., Mullane, E., Coles, B. J., 2004a. High-precision Cu and Zn isotope analysis by plasma source mass spectrometry — Part 1. Spectral interferences and their correction. J. Anal. At. Spectrom. 19, 209-217.

Mason, T. F. D., Weiss, D. J., Horstwood, M., Parrish, R. R., Russell, S. S., Mullane, E., Coles, B. J., 2004b. High-precision Cu and Zn isotope analysis by plasma source mass spectrometry — Part 2. Correcting for mass discrimination effects. J. Anal. At. Spectrom. 19, 218-226.

Mattielli, N., Petit, J. C. J., Deboudt, K., Flament, P., Perdrix, E., Taillez, A., Rimetz-Planchon, J., Weis, D., 2009. Zn isotope study of atmospheric emissions and dry depositions within a 5 km radius of a Pb-Zn refinery. Atmospheric Environment 43, 1265-1272.

Meybeck, M., 1983. Atmospheric inputs and river transport of dissolved substances. Proceeding of the Hamburg Symposium. IAHS Publ. 141, 173-192.

Meybeck, M., Chapman, D., Richard, H., 1989. Global fresh water quality. A first assessment, London: Blackwell, 195-217.

Miller, R. T., Martasek, P., Raman C. S., Siler Masters, B. S., 1999. Zinc content of Escherichia coli-expressed constitutive isoforms of nitric-oxide synthase. J.
Biol. Chem. 274, 14537– 14540.

Morel, F. M. M., 1991. Limitation of productivity by trace metals in the sea. Limnol. Oceanogr. 36, 1742-1755.

Négrel, P., Allègre, C. J., Dupré, B., Lewin, E., 1993. Erosion sources determined by inversion of major and trace element ratios and strontium isotopic ratios in river water: the Congo Basin case. Earth Planet. Sci. Lett. 120, 59-76.

Pacyna, J.M., Pacyna, E.G., 2001. An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environmental Reviews 9, 269–298.

Pichat, S., Douchet, C., Albarède, F., 2003. Zinc isotope variation in deep-sea carbonates from the eastern equatorial Pacific over the last 175 ka. Earth Planet. Sci. Lett. 210, 167-178.

Pokrovsky, O.S., Viers, J., Freydier, R., 2005. Zinc stable isotope fractionation during its adsorption on oxides and hydroxides. J. Colloid Interface Sci. 291, 192–200.

Racz, G. J., Fitzgerald, M. M., 2001. Nutrient and heavy metal contents of hog manure — effect on soil quality and productivity. In: Porc. of the International Conference on the Livestock Options for the Future, 25-27 Jun. Winnipeg, Manitoba, Canada.

Rehkämper, M., Mezger, K., 2000. Investigation of matrix effects for Pb isotopes ratio measurements by multiple collector ICP-MS: Verification and application of optimized analytical protocols. Journal of Analytical Atomic Spectrometry 15, 1451-1460.

Rehkämper, M., Schönbächler, M., Stirling, C. H., 2001. Multiple collector ICP-MS: Introduction to instrumentation, measurement techniques and analytical capabilities. Geostandards Newsletter: The Journal of Geostandards and Geoanalysis 25, 23-40.

Roy, S., Gaillardet, J., Allegre, C. J., 1999. Geochemistry of dissolved and suspended loads of the Seine river, France: Anthropogenic impact, carbonate and silicate weathering. Geochim. Cosmochim. Acta 63, 1277-1292.

Sequeira, R., 1981. Acid rain: some preliminary results from global data. J. Geophy. Res. 8, 147-150.

Shiel, A. E., Weis, D., Orians, K. J., 2010. Evaluation of zinc, cadmium and lead
isotope fractionation during smelting and refining. Science of the Total Environment 408, 2357-2368.

Shiller, A.M., Boyle, E., 1985. Dissolved zinc in rivers. Nature 317 (6032), 49–52.

Silver, S., 1996. Bacterial resistances to toxic metal ions—a review. Gene 179, 9-19.

Sivry, Y., Riotte, J., Sonke, J. E., Audry, S., Schäfer, J., Viers, J., Blanc, G., Freydier, R., Dupré, B., 2008. Zn isotopes as tracers of anthropogenic pollution from Zn-ore smelters The Riou Mort-Lot River system. Chemical Geology 255, 295-304.

Smieja-Król, B., Fiałkiewicz-Kozieł, B., Sikorski, J., Palowski, B., 2010. Heavy metal behaviour in peat – A mineralogical perspective. Sci. Total Environ. 408, 5924-5931.

Sonke, J. E., Sivry, Y., Viers, J., Freydier, R., Dejonghe, L., André, L., Aggarwal, L. K., Fontan, F., Dupré, B., 2008. Historical variations in the isotopic composition of atmospheric zinc deposition from a zinc smelter. Chemical Geology 252, 145-157.

Stallard, R. F., Edmond, J. M., 1981. Geochemistry of the Amazon: II. The influence of the geology and weathering environment in the dissolved load at the time of the peak discharge. J. Geophys. Res. 86, 9844-9858.

Stenberg, A., Andren, H., Malinovsky, D., Engstrom, E., Rodushkin, I., Baxter, D. C., 2004. Isotopic variations of Zn in biological materials. Anal. Chem. 76, 3971–3978.

Takkar, P. N., Mann, M. S., 1978. Toxic levels of soil and plant zinc for maize and wheat. Plant and Soil 49 (3), 667-669.

Tanimizu, M., Asada, Y., Hirata T., 2002. Absolute isotopic composition and atomic weight of commercial Zn using inductively coupled plasma mass spectrometry. Anal. Chem. 74, 5814–5819.

Taylor, S. R., McLennan, S. M., 1995. The geochemical evolution of the continental crust. Rev. Geophys. 33, 241-265.

Thapalia, A., Borrok, D. M., Metre, P. C. V., Musgrove, M., Landa, E. R., 2010. Zn and Cu isotopes as tracers of anthropogenic contamination in a sediment core from an urban lake. Environ. Sci. Technol. 44, 1544-1550.

Toutain, J.-P., Sonke, J., Munoz, M., Nonell, A., Polvé, M., Viers, J., Freydier, R.,
Sortino, F., Joron, J.-L., Sumarti, S., 2008. Evidence for Zn isotopic fractionation at Merapi volcano. Chem. Geol. 253, 74–82.

Tu, Y. J., You, C. F., 2010. Adsorption of Heavy Metals in Industrial Wastewater by Magnetic Nano-particles. 2010 AGU Fall Meeting, America.

Walder, A. J., Freedman, P. A., 1992. Communication. Isotopic ratio measurement using a double focusing magnetic sector mass analyser with an inductively coupled plasma as an ion source. J. Anal. At. Spectrom. 7, 571-575.

Weiss, D. J., Rausch, N., Mason, T. F. D., Coles, B. J., Wilkinson, J. J., Ukonmaanaho, L., Arnold, T., Nieminen, T. M., 2007. Atmospheric deposition and isotope biogeochemistry of zinc in ombrotrophic peat. Geochim. Cosmochim. Acta 71, 3498-3517.

Westfall, D. G., Amrani, M., Peterson, G. A., 1999. Water-solubility of zinc fertilizer: Does it matter? Better Crops 83, 18-21.

Wilkinsion, J. J., Weiss, D. J., Mason, T. F. D., Coles, B. J., 2005. Zinc and isotope variation in hydrothermal systems: preliminary evidence from the Irish
Midlands ore field. Econ. Geol. 100, 583-590.

Wombacher, F., Rehkämper, M., Mezger, K., Münker, C., 2003. Stable isotope compositions of cadmium in geological materials and meteorites determined by multiple-collector ICPMS. Geochimica et Cosmochimica Acta 67, 4639-4654.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-09-07起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-09-07起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw