進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-3107202011392500
論文名稱(中文) 雙邊貼附有雙壓電片之Timoshenko樑承受移動負載之動態分析
論文名稱(英文) Dynamic Analysis of Timoshenko Beam with Bilateral Surface Mounted Two Piezoelectric Material under Moving Load
校院名稱 成功大學
系所名稱(中) 工程科學系
系所名稱(英) Department of Engineering Science
學年度 108
學期 2
出版年 109
研究生(中文) 歐明達
研究生(英文) Ming-Dar Ou
學號 N96051237
學位類別 碩士
語文別 中文
論文頁數 72頁
口試委員 指導教授-王榮泰
口試委員-周榮華
口試委員-陳澤生
中文關鍵字 複合材料  壓電片  移動負載  模態法 
英文關鍵字 Composite Timoshenko beam  Piezoelectric  modal analysis  moving load 
學科別分類
中文摘要 本文探討一根雙邊各貼附有兩塊壓電片之複合材料懸臂樑承受移動負載時之振動分析,並採用模態法來分析並探討在移動負載下結構所產生之響應。基於Timoshenko樑理論,在不考慮阻尼、溫度效應下,將結構分為五個跨距,其中一、三與五跨距樑皆為複合材料結構,二、四跨距樑為壓電材料¬¬ 複合材料樑 壓電材料所組成的三明治結構。
模態法方面,利用結構位移關係、應力場、應變場推導出應變能、動能,再利用Hamilton`s principle建立整體結構之統御方程式。由統御方程式與邊界條件可進一步求得結構之自然頻率與模態形狀函數。由模態形狀函數推導出整體結構受移動負載之動態方程式,再利用模態疊加法與Runge-Kutta Method求解動態響應。進而探討結構之響應、壓電片之電荷收集情形,最後也探討移動負載之速度對於整體結構響應的變化,以及找出移動負載之臨界速度。
英文摘要 The purpose of this thesis is to investigate the dynamic behavior of a piezoelectric structure under a moving load. The structure is a five-span composite Timoshenko beam with two pairs of piezoelectric material mounted on the surface of the second and fourth span. Both the temperature effect and viscous effect are not included. The governing equations and boundary conditions of the entire structure are derived via the Hamilton`s principle. The natural frequencies and the corresponding mode shape functions are obtained from analytical method. The modal-analysis method is used to investigate the dynamic response of the entire structure and the voltage collected by the piezoelectric segments caused by the moving load. The effects of geometric conditions of the structure, such as the thickness of the beam or the piezoelectric segments, the composite fiber angle and the length of each span are considered. The velocity effects of the moving load are investigated. There is a critical velocity of the moving load to cause the absolute maximum deflection of the host beam and the absolute maximum voltage collected by the piezoelectric segments.
論文目次 目錄
摘要 I
Extended Abstract II
誌謝 VIII
目錄 IX
表目錄 XII
圖目錄 XIII
符號說明 XV
第一章 緒論 1
1-1 研究動機與目的 1
1-2 文獻回顧 3
1-3 論文架構 6
1-4 論文架構流程 7
1-5 基本假設 8
第二章 研究方法與內容 9
2-1 研究模型結構 9
2-1-1 幾何結構 9
2-1-2 位移函數 10
2-1-3 複合材料之位移、轉角、應力、應變、應變能、動能 11
2-1-4 壓電材料基本參數 15
2-1-5 壓電材料位移、轉角、應力、應變、應變能、動能與電能 17
2-1-6 結構方程式與邊界條件 20
2-2 模態法分析 27
2-2-1 求解一三五跨距樑運動方程式 27
2-2-2 求解二四跨距樑運動方程式 30
2-2-3 自然振動頻率 37
2-3 強迫振動 38
2-3-1 移動負載響應 38
2-3-2 Runge-Kutta 法解移動負載方程式 39
第三章 案例討論與數據分析 42
3-1 材料參數設定 42
3-2 自然頻率與模態 43
3-2-1 結構自然頻率與模態圖 43
3-2-2 結構之不同幾何條件對於自然頻率之影響比較 45
3-3 整體結構受移動負載之分析 48
3-3-1 改變複材樑之厚度對於結構響應之比較 49
3-3-2 改變壓電片之厚度對於結構響應之比較 51
3-3-3 改變壓電片位置對於結構響應之比較 53
3-3-4 改變移動負載之速度對於結構響應之比較 55
3-3-5 移動負載速度比對結構響應極值之比較 57
第四章 結論與未來展望 58
4-1 結論 58
4-2 未來展望 59
參考文獻 60
附錄A 63
附錄B 64
附錄C 65
附錄D 69
附錄E 70

參考文獻 參考文獻
[1] Hamada, T.R. “Dynamic Analysis Of A Beam Under A Moving Force: A Double Laplace Transform Solution”, Journal of Sound and Vibration ,Vol.74(2), 221-233, 1981.
[2] Jong-Dar Yau, “Vibration Of Simply-supported Compound Beams To Moving Loads”, Journal of Marine Science and Technology ,Vol.12 No.4, 319-328, 2004.
[3] Olesson, M. “ On The Fundamental Moving Load Problem”, Journal of Sound and Vibration ,Vol.145(2), 299-307, 1991.
[4] Johansson, C. and Pacoste, C.“Closed-form Solution For The Mode Superposition Analysis Of The Vibration In Multi-span Beam Bridges Caused By Concentrated Moving Loads”, Computers and Structures, Vol.119, 85-94, 2013.
[5] Zhu, X.Q. and Law, S.S. “Moving Forces Identification On A Milti-span Continuous Bridge”, Journal of Sound and Vibration Vol.228(2), 377-396, 1999.
[6] Seroj Mackertich, “Moving Load On A Timoshenko Beam”, Journal of the Acoustical Society of America Vol.88, 1175-1178, 1990.
[7] Pawel Śniady, “Dynamic Response Of A Timoshenko Beam To A Moving Force”, Jornal of Applied Mechanics ,Vol.75, 024503-1 - 024503-4, 2008.
[8] Kusculioglu, Z.K. and Fallahi, B. “Finite Element Model Of A Beam With A Piezoceramic Patch Actuator”, Journal of Sound and Vibration ,Vol.276, 27-44, 2004.
[9] Mohammadimehr , M. and Mohammadi Hooyeh, H. “Free Vibration Analysis Of Double-bonded Isotropic Piezoelectric Timoshenko Microbeam Based On Strain Gradient And Surface Stress Elasticity Theories Under Initial Stress Using Differential Quadrature Method”, Mechanics of Advanced Materials and Structure , Vol.24 No.4, 287-303, 2017.
[10] Taehyun Kim and Ilwook Park, “Forced Vibration Of A Timoshenko Beam Subjected To Stationary And Moving Loads Using The Modal Analysis Method”, Shock and Vibration, 19-25, 2017.
[11] Legner, D. and WackerfuB, J. “An Advanced Finite Element Formulation For Piezoelectric Beam Structure”, Computational Mechanics ,Vol.52, 1331-1349, 2013.
[12] Sulbhewar, Litesh N. and Raveendranath, P. “A Timoshenko Piezoelectric Beam Finite Element With Consistent Performance Irrespective Of Geometric And Material Configuration”, Latin American Journal of Solids and Structures ,Vol.13, 992-1015, 2016.
[13] Pan, J., Hansen, C. H. and Snyder, S. D. “A study of response of a simple supported beam to excitation by a piezoelectric actuator,” Journal of Intelligent Material Systems and Structures, Vol.3,pp. 120-130,1992.
[14] Yoshimura , T., Hino, J. and Ananthanarayana, N. “Vibration analysis of nonlinear beam subjected to moving loads by use Galerkin method,” Journal of Sound and Vibration, Vol. 104, pp. 179-186, 1986.
[15] 吳弘志,具單層貼附式壓電材料之Timoshenko樑振動分析,成功大學工程科學系碩士論文, 2013.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw