進階搜尋


 
系統識別號 U0026-3107201916155300
論文名稱(中文) 以整合空間統計分析之崩塌災害預警演算陳有蘭溪集水區內崩塌潛勢指標
論文名稱(英文) Early warning of landslide hazard by integrating spatial statistical analysis methods to calculate the landslide susceptibility index in the Chen-Yu-Lan River watershed, Taiwan
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 107
學期 2
出版年 108
研究生(中文) 阮氏素銀
研究生(英文) Thi-To-Ngan Nguyen
學號 L48997013
學位類別 博士
語文別 英文
論文頁數 79頁
口試委員 指導教授-劉正千
召集委員-羅衛
口試委員-黃誌川
口試委員-樂鍇‧祿璞崚岸
口試委員-陳毅青
中文關鍵字 None 
英文關鍵字 Early warning  landslide susceptibility index  GIS  Remote sensing  Chen-Yu-Lan  FOMOSAT-2 imagery  bivariate statistics  multivariate statistics  AHP  QPESUMS 
學科別分類
中文摘要 None
英文摘要 Landslides are destructive geological processes that can cause extreme damage to infrastructure and loss of life. Since landslide occurrences is determined by both preparatory and trigger factors, a quantitative relationship among these factors is needed to assess landslide hazards. This study wants to understand the importance and correlation of these factors on landslides. The data such as landslide inventory map, DEM, geological map, and land-use were used to calculate landslide susceptibility index (LSI) and produce the LSI maps. Based on the historical landslide data (landslide data for eight years), the bivariate statistical analysis is used to measure the landslide density within different zones of the factors which are then further analyzed by the analytic hierarchy process (AHP) method to calculate the weight value of the factors. Furthermore, to examine the different effects of factor on landslides, the correlation analysis method is used to accomplish this work. In addition to, to look at the level of triggering factors’ impact on landslides, the data associated with Typhoon Kalmaegi and Typhoon Morakot are also analyzed during the process. Finally, some evaluation methods including the binary classification, the kappa index are employed to validate the LSI maps. The results of this work show the feasibility of planning and warning of high landslide probability zones.
論文目次 ACKNOWLEDGEMENTS II
ABSTRACT I
TABLE OF CONTENTS III
LIST OF TABLES VII
LIST OF FIGURES IX
SYMBOLS XII
CHAPTER ONE INTRODUCTION 1
1.1. Research Background. 1
1.2. Objectives 6
1.3. Research questions 7
CHAPTER TWO LITERATURE REVIEW 8
2.1. Landslide definition 8
2.2. Types of landslide maps 9
2.2.1. Landslide inventory maps 9
2.2.2. Landslide hazard map 9
2.2.3. Landslide susceptibility map 10
2.2.4. Landslide potential maps 10
2.2.5. Landslide risk maps 10
2.3. Landslide factors 11
2.3.1. Slope stability 11
2.3.2. Material properties 12
2.3.3. Morphological characteristics 13
2.3.4. Climate 13
2.3.5. Human factor 13
2.3.6. Natural hazards 14
2.4. Remote sensing (RS) and GIS in mapping landslide inventory 14
2.5 Landslide susceptibility analysis 16
2.5.1 Heuristic approach 16
2.5.2 Statistic approach 17
2.5.3 Probabilistic approach 17
2.5.4 Deterministic approach 17
2.6 Previous studies 18
2.6.1 Researches or studies related to landslide in Chen-Yu-Lan River watershed 18
2.6.2 Researches or studies of generating landslide susceptibility map carried out in many places in the world 19
CHAPTER THREE STUDY AREA 21
3.1 Geographical information 21
3.2 Geological information 22
3.3 Natural hazards 24
CHAPTER FOUR DATA 25
4.1. Geological map 25
4.2. Digital elevation model (DEM) 26
4.3. Formosat-2 imagery 29
4.4. Landslide inventory maps (LM) 30
4.5 Land-use map 33
4.6 Rainfall data 34
4.7. Software 37
4.7.1. ENVI version 4.8 37
4.7.2. ARCGIS version 9.3 37
CHAPTER FIVE METHODOLOGY 38
5.1. Determining landslide factors to apply for computing LSI 40
5.2. Calculating the weight of the factors 41
5.2.1. The landslide density model 41
5.2.2. A combination of the AHP and the bivariate statistical analysis 42
5.3 Generating the LSI map by multivariate statistical analysis 43
5.3.1. Coefficients of landslide factors equal value of 1 43
5.3.2. Finding landslide factors’ coefficients by a combination of the correlation analysis and the AHP 44
5.4. Validating the prediction accuracy of LSI models 46
5.4.1. The binary classification 47
5.4.2. Kappa index (K) 47
5.4.3. The cumulative curve 48
CHAPTER SIX RESULTS AND DISCUSSION 49
6.1. Producing the LSI maps by the geometric mean multivariate and the arithmetic mean multivariate analyses 49
6.2. Calculating the weight value by a combination of the bivariate statistical analysis and the AHP 54
CHAPTER SEVEN CONCLUSION 65
7.1. The weight of factors 65
7.2. The LSI maps 65
7.3. Future works 67
REFERENCES 68
APPENDICES 73
Appendix 1. Summarize of researches related to landslides carried out in Chen-Yu-Lan watershed 73
Appendix 2. The LHI maps. 75
Appendix 3. 77
參考文獻 1. N. Casagli, F. Guzzetti, M. Jaboyedoff, F. Nadim, D. Petley, "CHAPTER 3 UNDERSTANDING DISASTER RISK: HAZARD RELATED RISK ISSUES - SECTION II.," SCIENCE FOR DISASTER RISK MANAGEMENT 2017 (European Commission, 2017).
2. T. T. N. Nguyen, C.-C. Liu, A New Approach Using AHP to Generate Landslide Susceptibility Maps in the Chen-Yu-Lan Watershed, Taiwan. Sensors (Basel, Switzerland) 19, 505 (2019)10.3390/s19030505).
3. IFRC, "World Disasters Report 2016: Resillence: saving lives today, investing for tomorrow," World Disasters Report (Geneve, 2016).
4. Asianinfo, http://asianinfo.org.
5. CGS, http://www.moeacgs.gov.tw/english/twgeol/twgeol_introduction.jsp. Central Geological Survey, MOEA.
6. M. Dilley, R. S. Chen, U. Deichmann, A. L. Lerner-Lam, M. Arnold, "Natural Disaster Hotspots: A Global Risk Analysis," Disaster risk management (Washington, DC, 2005).
7. J.-K. Liu, K.-T. Chang, R. Jiann-Yeou, H. Wei-Cheng, L. Yu-Zi, L. Chi-Chung, T.-Y. Shih, The Geomorphometry of Rainfall-Induced Landslides in Taiwan Obtained by Airborne Lidar and Digital Photography. Geoscience and Remote Sensing, Pei-Gee Peter Ho (Ed.), ISBN: 978-953-307-003-2, InTech, , (2009).
8. NFA, Historical records of natural disasters of Taiwan from 1958 to 2007. (2008).
9. CWB. (Central Weather Bureau, Taiwan, 2019).
10. C.-W. Lin, S.-H. Liu, S.-Y. Lee, C.-C. Liu, Impacts of the Chi-Chi earthquake on subsequent rainfall-induced landslides in central Taiwan. Engineering Geology 86, 87-101 (2006)10.1016/j.enggeo.2006.02.010).
11. J. C. Chang, Relationship between geomorphic environment and natural hazard in Chenyulan grainage basin. Bulletin of the Geographical Society of China, 43-64 (1997).
12. Y.-P. Lin, T.-K. Chang, C.-F. Wu, T.-C. Chiang, S.-H. Lin, Assessing impact of typhoons and Chi-Chi earthquake on Chenyulan watershed landscape pattern in Central Taiwan using Landscape metrics. Springer 38, 108-125 (2006).
13. C.-W. Lin, C.-L. Shieh, B.-D. Yuan, Y.-C. Shieh, S.-H. Liu, S.-Y. Lee, Impact of Chi-Chi earthquake on occurrence of landslides and debris flows: example from Chenyulan River watershed, Nantou, Taiwan. Elsevier engineering geology 71, 49-61 (2003).
14. C. J. Van Westen, N. Rengers, R. Soeters, Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment. Natural Hazards 30, pp. 399-419 (2003); published online Epub2003/11/01 (10.1023/B:NHAZ.0000007097.42735.9e).
15. E. A. Castellanos Abella, C. J. Van Westen, Qualitative landslide susceptibility assessment by multicriteria analysis: A case study from San Antonio del Sur, Guantánamo, Cuba. Geomorphology 94, pp. 453-466 (2008)http://dx.doi.org/10.1016/j.geomorph.2006.10.038).
16. S. M. Baban, K. J. Sant, Mapping landslide susceptibility for the Caribbean island of Tobago using GIS, multi-criteria evaluation techniques with a varied weighted approach. Caribbean Journal of Earth Science 38, pp. 11-20 (2005).
17. J. G. Liu, P. J. Mason, N. Clerici, S. Chen, A. Davis, F. Miao, H. Deng, L. Liang, Landslide hazard assessment in the Three Gorges area of the Yangtze river using ASTER imagery: Zigui–Badong. Geomorphology 61, pp. 171-187 (2004)http://dx.doi.org/10.1016/j.geomorph.2003.12.004).
18. I. G. Fourniadis, J. G. Liu, P. J. Mason, Landslide hazard assessment in the Three Gorges area, China, using ASTER imagery: Wushan–Badong. Geomorphology 84, pp. 126-144 (2007)http://dx.doi.org/10.1016/j.geomorph.2006.07.020).
19. T.-T.-N. Nguyen, C.-C. Liu, Combining bivariate analysis and multivariate analysis to assess landslide susceptibility in Chen-Yu-Lan watershed, Nantou, Taiwan. Sustainable Environment Research 24, pp. 257-271 (2014).
20. P. Aleotti, A warning system for rainfall-induced shallow failures. Engineering Geology 73, pp. 247-265 (2004)http://dx.doi.org/10.1016/j.enggeo.2004.01.007).
21. M. J. Crozier, T. Glade, paper presented at the Zeitschrift für Geomorphologie, Berlin Stuttgart, 1999.
22. T. Glade, M. Crozier, P. Smith, Applying Probability Determination to Refine Landslide-triggering Rainfall Thresholds Using an Empirical “Antecedent Daily Rainfall Model”. Pure appl. geophys. 157, pp. 1059-1079 (2000); published online Epub2000/08/01 (10.1007/s000240050017).
23. J. W. Godt, R. L. Baum, A. F. Chleborad, Rainfall characteristics for shallow landsliding in Seattle, Washington, USA. Earth Surface Processes and Landforms 31, pp. 97-110 (2006)10.1002/esp.1237).
24. D. J. Varnes, Landslide hazard zonation: a review of principles and practice. Natural Hazards 3, pp. 61-63 (1984).
25. T. Glade, M. Anderson, M. J. Crozier, Landslide hazard and risk: Issues, Concepts and Approach. Landslide hazard and risk (John Wiley & Sons, Ltd., Chichester, West Sussex, England, 2005).
26. F. Bureau, Applying Satellite Images in Taiwan Landslide Interpretation and Disaster Damage Analysis. (2010).
27. P.-S. Lin, J.-Y. Lin, J.-C. Hung, M.-D. Yang, Assessing debris-flow hazard in a watershed in Taiwan. Engineering Geology 66, 295-313 (2002)http://dx.doi.org/10.1016/S0013-7952(02)00105-9).
28. P.-S. Lin, J.-Y. Lin, S.-Y. Lin, J. Lai, Hazard assessment of debris flows by statistical analysis and GIS in Central Taiwan. International Journal of Applied Science and Engineering, 165-187 (2006); published online Epub2006-09 (
29. C.-W. Lin, C.-L. Shieh, B.-D. Yuan, Y.-C. Shieh, S.-H. Liu, S.-Y. Lee, Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows: example from the Chenyulan River watershed, Nantou, Taiwan. Engineering Geology 71, 49-61 (2004)10.1016/s0013-7952(03)00125-x).
30. M.-D. Yang, J.-Y. Lin, C.-Y. Yao, J.-Y. Chen, T.-C. Su, C.-D. Jan, Landslide-induced levee failure by high concentrated sediment flow — A case of Shan-An levee at Chenyulan River, Taiwan. Engineering Geology 123, 91-99 (2011)http://dx.doi.org/10.1016/j.enggeo.2011.07.006).
31. S. Wan, T. C. Lei, A knowledge-based decision support system to analyze the debris-flow problems at Chen-Yu-Lan River, Taiwan. Knowledge-Based Systems 22, 580-588 (2009)10.1016/j.knosys.2009.07.008).
32. L. Highland, M. Johnson, Landslide type and processes. USGS science for a changing world, (2004).
33. D. J. Varnes, Slope movement types and processes. Transportation Research Board, Special Report 176, 11-33 (1978).
34. E. L. Harp, R. W. Jibso, INVENTORY OF LANDSLIDES TRIGGERED BY THE 1994 NORTHRIDGE, CALIFORNIA EARTHQUAKE. U.S. Geological Survey Open-File Report 95-213, (1995).
35. E. L. Harp, J. A. Michael, W. T. Laprade, Shallow-Landslide Hazard Map of Seattle, Washington. U.S. Geological Survey Open-File Report 2006–1139, (2006).
36. W. H. Schulz, Landslide Susceptibility Estimated From Mapping Using Light Detection and Ranging (LIDAR) Imagery and Historical Landslide Records, Seattle, Washington. U.S. Geological Survey Open-File Report 2005–1405, (2005).
37. M. Lineback Gritzner, W. A. Marcus, R. Aspinall, S. G. Custer, Assessing landslide potential using GIS, soil wetness modeling and topographic attributes, Payette River, Idaho. Geomorphology 37, 149-165 (2001)10.1016/s0169-555x(00)00068-4).
38. R. Jelínek, J. Hervás, M. Wood, Risk Mapping of Landslides in New Member States. JRC Scientific and Technical reports, (2007).
39. USGS, Landslide Hazard Program. http://landslides.usgs.gov/learning/faq/#q12.
40. Ca.gov, CAlifornia Geological survey-Landslide. http://www.consrv.ca.gov/cgs/geologic_hazards/landslides/Pages/Index.aspx.
41. A. Hansen, Landslide hazard analysis. In: D. Brunsden and D.B. Prior (Eds.), Slope Instability. Wiley, New York, 523-602 (1984).
42. C. J. Wills, F. G. Perez, C. I. Gutierrez, SUSCEPTIBILITY TO DEEP-SEATED LANDSLIDES IN CALIFORNIA. CALIFORNIA DEPARTMENT OF CONSERVATION, CALIFORNIA GEOLOGICAL SURVEY MAP SHEET 58 RELEASE, (2011).
43. M. J. Crozier, Landslide: Causes, Consequences and Environment. Croom Helm Australia Private Limited, 252 (1986).
44. J. S. Griffiths, Proving the occurrence and cause of a landslide in a legal context. Bulletin of Engineering Geology and the Environment 58, 75-85 (1999)10.1007/s100640050070).
45. D. F. Ritter, R. C. Kochel, J. R. Miller. (Mc Graw-Hill, New York, 1995), pp. 84-189.
46. E.-R. Lin, C.-C. Liu, C.-H. Chang, I.-F. Cheng, M.-H. Ko, Using the FORMOSAT-2 High Spatial And Temporal Resolution Multispectral Image For Analysis And Interpretation Landslide Disasters in Taiwan. Journal of Photogrammetry and Remote Sensing 17, pp. 15-35 (2013).
47. C. C. Liu, J. G. Liu, C. W. Lin, A. M. Wu, S. H. Liu, C. L. Shieh, Image processing of FORMOSAT‐2 data for monitoring the South Asia tsunami. International Journal of Remote Sensing 28, pp. 3093-3111 (2007); published online Epub2007/07/01 (10.1080/01431160601094518).
48. C.-C. Liu, Preparing a landslide and shadow inventory map from high-spatial-resolution imagery facilitated by an expert system. APPRES 9, pp. 096080-096080 (2015)10.1117/1.jrs.9.096080).
49. C. J. van Westen, T. W. J. van Asch, R. Soeters, Landslide hazard and risk zonation—why is it still so difficult? Bulletin of Engineering Geology and the Environment 65, 167-184 (2006)10.1007/s10064-005-0023-0).
50. B. F. D. Wahono, Universitas Gadjah Mada, Indonesia (2010).
51. C. J. V. Westen, Technical University of Delft, (1993).
52. R. Soeters, C. J. V. Westen, Slope instability recognition, analysis and zonation. Landslide, investigation and mitigation (Turner AK, Schuster RL, Transportation Research Board, National Research Council, Special Report 247, National Academy Press, 1996).
53. F. Guzzetti, P. Reichenbach, M. Cardinali, M. Galli, F. Ardizzone, Probabilistic landslide hazard assessment at the basin scale. Geomorphology 72, 272-299 (2005); published online Epub2005/12/01/ (https://doi.org/10.1016/j.geomorph.2005.06.002).
54. C. J. V. Westen, M. J. T. Terlien, AN APPROACH TOWARDS DETERMINISTIC LANDSLIDE HAZARD ANALYSIS IN GIS. A CASE STUDY FROM MANIZALES (COLOMBIA). Earth Surface Processes and Landforms 21, 853-868 (1996)10.1002/(sici)1096-9837(199609)21:9<853::aid-esp676>3.0.co;2-c).
55. J. G. Liu, P. J. Mason, N. Clerici, S. Chen, A. Davis, F. Miao, H. Deng, L. Liang, Landslide hazard assessment in the Three Gorges area of the Yangtze river using ASTER imagery: Zigui-Badong. Elsevier Science Geomorphology 61, 171-187 (2004).
56. I. G. Fourniadis, J. G. Liu, P. J. Mason, Landslide hazard assessment in the Three Gorges area, China, using ASTER imagery: Wushan-Badong. Elsevier Science Geomorphology 84, 126-144 (2007).
57. I. G. Fourniadis, J. G. Liu, P. J. Mason, Regional assessment of landslide impact in the Three Gorges area, China, using ASTER data: Wushan-Zigui. Springer 4, 267-278 (2007).
58. S. Lee, U. Chwae, K. Min, Landslide susceptibility mapping by correlation between topography and geological structure: the Janghung area, Korea.pdf. Elsevier Science Geomorphology 46, 149-162 (2002).
59. E. A. Castellanos Abella, C. J. Van Westen, Qualitative landslide susceptibility assessment by multicriteria analysis: A case study from San Antonio del Sur, Guantánamo, Cuba. Geomorphology 94, 453-466 (2008)10.1016/j.geomorph.2006.10.038).
60. Wikipedia, Geography of Taiwan. http://en.wikipedia.org/wiki/Geography_of_Taiwan.
61. G.-F. Lin, L.-H. Chen, J.-N. Lai, Assessment of Risk due to Debris Flow Events: A Case Study in Central Taiwan. Natural Hazards 39, 1-14 (2006)10.1007/s11069-005-1922-x).
62. l. Gemdas, http://gemdas.earth.ncku.edu.tw/landslide.aspx. (2011).
63. CWB. (Central Weather Bureau, Taiwan, 2014).
64. CWB. (Central Weather Bureau, Taiwan, 2011).
65. M. Hazewinkel, ed, "Linear interpolation". Encyclopedia of Mathematics (Springer, 2001).
66. M. L. Süzen, B. Ş. Kaya, Evaluation of environmental parameters in logistic regression models for landslide susceptibility mapping. International Journal of Digital Earth 5, 338-355 (2012).
67. E. R. Babbie, The Practice of Social Research. Wadsworth Publishing, 436-440 (2009).
68. K. L. Yin, T. Z. Yan, paper presented at the Proceesing Fifth International Symposium on Landslide, Lausanne, Balkema, Rotterdam, Netherlands, 1988 1988.
69. T. L. Saaty, The Analytic Hierarchy Process. (McGraw-Hill International, New York, 1980).
70. T. L. Saaty, Decision Making for Leaders: The Analytic Hierarchy Process for Decisions in a Complex World. (RWS Publications, Pittsburgh, Pennsylvania, 2008).
71. K. Schmidt, I. Aumann, I. Hollander, K. Damm, J. M. G. von der Schulenburg, Applying the Analytic Hierarchy Process in healthcare research: A systematic literature review and evaluation of reporting. BMC Medical Informatics and Decision Making 15, 112 (2015); published online Epub12/24
08/14/received
12/15/accepted (10.1186/s12911-015-0234-7).
72. F. H. Ho, S. H. Abdul-Rashid, R. A. R. Ghazilla, Analytic Hierarchy Process-Based Analysis to Determine the Barriers to Implementing a Material Efficiency Strategy: Electrical and Electronics' Companies in the Malaysian Context. Sustainability, MDPI 8, 1035 (2016).
73. N. Gerdsri, D. F. Kocaoglu, Applying the Analytic Hierarchy Process (AHP) to build a strategic framework for technology roadmapping. Mathematical and Computer Modelling 46, 1071-1080 (2007); published online Epub2007/10/01/ (https://doi.org/10.1016/j.mcm.2007.03.015).
74. A. Sultan, K. A. AlArfaj, G. A. AlKutbi, Analytic hierarchy process for the success of e‐government. Business Strategy 13, 295-306 (2012)https://doi.org/10.1108/17515631211286146).
75. B. J., C. J., H. Y., C. I., Pearson Correlation Coefficient. In: Noise Reduction in Speech Processing. Springer Topics in Signal Processing (Springer, Berlin, Heidelberg, 2009), vol. 2.
76. P. Goovaerts, Geostatistics for Natural Resources Evaluation. Applied geostatistics series (Oxford University Press, United States of America, 1997).
77. C.-J. Chung, A. Fabbri, Validation of Spatial Prediction Models for Landslide Hazard Mapping. Natural Hazards 30, pp. 451-472 (2003); published online Epub2003/11/01 (10.1023/B:NHAZ.0000007172.62651.2b).
78. Y. C. Chen, K. T. Chang, S. F. Wang, J. C. Huang, C. K. Yu, J. Y. Tu, H. J. Chu, C. C. Liu, Controls of preferential orientation of earthquake‐and rainfall‐triggered landslides in Taiwan's orogenic mountain belt. Earth Surface Processes and Landforms, (2019).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-07起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-07起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw