系統識別號 U0026-3107201815154300
論文名稱(中文) 利用反射式二次諧波分析氧化鋅薄膜表面粗糙度與氣體吸附能力之相關性
論文名稱(英文) The correlation between the ability of gas adsorption and the roughness of ZnO films analyze by reflective second harmonic generation
校院名稱 成功大學
系所名稱(中) 物理學系
系所名稱(英) Department of Physics
學年度 106
學期 2
出版年 107
研究生(中文) 蔡松達
研究生(英文) Sung-Ta Tsai
學號 L26054221
學位類別 碩士
語文別 英文
論文頁數 60頁
口試委員 指導教授-羅光耀
中文關鍵字 即時量測  二次諧波  氧化鋅薄膜  氣體吸附脫附  氣體感測器 
英文關鍵字 In-situ  Second harmonic generation  ZnO films  adsorption and desorption  gas sensor 
中文摘要 近幾年,氣體吸附在許多相關研究企業領域引起非常大的影響,而其中調節和控制薄膜的表面狀態雖然困難但是也是一個令人感興趣的科學議題。作為氧化物半導體,ZnO奈米結構是一種極好的選擇,因為(002)面是最低形成能量平面並且容易形成奈米結構表面。氧化鋅也是金屬氧化物半導體中常見光催化劑之一,而其寬帶隙約為3.3eV以及激發束縛能高達60meV,並透過照射紫外光達到光脫附的實驗。而我們也利用氬等離子體轟擊過程的各個階段來改變薄膜的表面形貌,其中AFM和SEM檢測了變化。ZnO薄膜經過氬離子轟炸表面不僅改變了表面形態,而且也改變了它們的表面狀態,例如表面上的化學鍵合。透過SHG產生的訊號來檢測ZnO film在Si(111)上兩者結構之間的相依和對稱性質以及利用即時定點量測,此種非接觸的方式並透過反應過程中因為氣體吸附形成的內建感應電場二次諧波訊號觀察氣體吸附脫附的物理-化學過程,也透過定點SHG可以檢測在不同的ZnO薄膜表面形貌下氧氣(或臭氧)吸附的變化和紫外光照射下的脫附過程。我們藉由RSHG的圖形對稱和峰值強度即時分析Si(111)上生長的ZnO薄膜品質以及在氧氣吸附和脫附之間RSHG的變化。我們的工作主要為了了解氣體感測器的靈敏度與氧化薄膜的表面狀態和形態之間的強相關性並且探討其變化的原因,利用偶極子貢獻的觀點觀察氣體感測器的變化是一種非常新穎的方式。
英文摘要 Surface modification of the thin film structure is one of the most feasible method to modify the surface state and their gas sensing properties. Regulating and controlling the surface state of thin film are difficult but interesting things. As an oxide semiconductor, ZnO nanostructure is an excellent choice because the (002) plane is the lowest energy plane and easier to form nanostructure. Also it’s a general compound for common photocatalysts among the metal oxides, such as it is suitable to react under UV light due to its large band gap and excitation binding energy. According to these properties, we utilized the various stages of argon plasma bombardment process to modify the surface morphology of thin films which variation inspected by AFM and SEM.
The bombed surface of ZnO films not only changes the surface morphology but also vary their surface states, such as the chemical bonding on the surface (or defects measured by XPS). The variation of O2 (or dissolved by ozone) adsorption and the process of desorption by UV light irradiation at varied surface morphology of ZnO thin films can be inspected by time-dependent SHG probes. We observed the symmetrical pattern and amplitude of RSHG which reveals the quality of ZnO film grown on the Si (111), and the related variation of RSHG between O2 adsorption and desorption. Our work provides a strong correlation between the sensitivity of gas sensor, and the surface states and morphology of oxide films, which is novel in the analysis of gas sensor by the viewpoint of the dipole contribution.
論文目次 Contents
摘要 i
Abstract ii
List of Figures iv
List of Tables vi
Chapter 1 Introduction 1
1.1The properties of ZnO 1
1.2The structure of ZnO and Si(111) 2
1.3 Application of ZnO in gas sensor 2
1.4 Documents review 4
Chapter 2 Theory 7
2.1 Mechanism of gas sensor 7
2.2 The principle of measuring instrument 11
2.3 Measuring ZnO films by the second harmonic generation(SHG) 15
2.4 The correlation between the surface state of ZnO films and oxygen adsorption 24
2.5 The mechanism of oxygen adsorption and UV desorption 25
Chapter 3 Experiments 27
3.1 Process of cleaning Si(111) substrate 27
3.2 Procedure of ZnO film 28
3.3 The setup of reflective second harmonic generation (RSHG) 30
3.3.1 Optical measurement system 30
3.3.2 Integration System 31
3.4 The setup of UV irradiation system 31
Chapter 4 Result and discussion 33
4.1.1 The relation between ZnO and Si(111) 33
4.1.2 ZnO films on different substrate 34
4.2 Oxygen adsorption 40
4.2.1 Time-dependent SHG and photo-assisted effect caused by laser 40
4.3. Modification of ZnO surface by argon ion bombardment 43
4.4 UV desorption 51
4.4.1 Chemisorption and Physisorption 51
4.4.2 UV desorption by TD-SHG analysis 52
Chapter 5 Conclusion 57
Reference 58

參考文獻 [1] U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, J. Appl. Phys. 98 (2005).
[2] Zhong Lin Wang, J. Phys.: Condens. Matter 16, R829–R858 (2004).
[3] Lukas Schmidt-Mende and Judith L. MacManus-Driscoll, materialstoday VOLUME 10, NUMBER 5 (2007).
[4] Mika Niskanen, Mikael Kuisma, Oana Cramariuc, Viacheslav Golovanov, Terttu I. Hukka, Nikolai Tkachenko and Tapio T. Rantala, Phys. Chem. Chem. Phys., 15, 17408--17418 (2013).
[5] http://www.iue.tuwien.ac.at/phd/ungersboeck/node27.html.
[6] J.Y. Guo, Y.W. Zhang and C. Lu, Computational Materials Science 44, 174–179 (2008).
[7] Ananya Dey, Materials Science and Engineering:B Volume 229, March 2018
[8] Alejandro J Gimenez, Journal of Intelligent Material Systems and Structures 24(18) 2255–2261
[9] T. Seyama, H. Futata, F. Era, N. Yamazoe, Denki Kagaku 40(1972) 244.
[10] N. Yamazoe, Sens. Actuat. B 5 (1991) 7.[11] S. Xu, Z. L. Wang, Nano Res. 4 (2011) 1013.
[12] S. V. Andersen, et al. Interaction between O2 and ZnO films probed by time dependent second-harmonic generation. Applied Physics Letters.(2014)
[13] G. Heiland, D. Kohl, In: T. Seiyama (Ed.), Chemical Sensors Technology, Elsevier, Amsterdam (1988) p. 15–38.
[14] P. K. Kannan, R. Saraswathi, J. B. B. Rayappan, Sens. Actuat. A164 (2010) 8.
[15] http://www.figaro.co.jp/en/technicalinfo/principle/mos-type.html
[16] Pramod Gaikwad, Anal. Chem., 2015, 87 (14), pp 7439–7445
[17] Jack Chou, Hazardous Gas Monitors, October, 1999
[18] Bin-Lin Chung, The anti-interference characteristics in IrO2/Ta2O5-based Potentiometric Microsensors Sensitive to Carbon Dioxide, June, 2005
[19] https://en.wikipedia.org/wiki/Catalytic_bead_sensor
[20] https://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy
[21] 連興隆, X-ray Photoelectron Spectroscopy
[22] Robert A. Wilson and Heather A. Bullen, Basic Theory Atomic Force Microscopy (AFM)
[23] https://www.quora.com/How-does-atomic-force-microscopy-work#LNbLH
[24] Robert W. Boyd, “ Non-linear Optics 3e ” (2008).
[25] K. Y. Lo and Y. J. Huang, Apple. Phys. Lett. 90, 161904 (2007).
[26] K. Y. Lo, S. C. Lo, C. F. Yu, T. Tite, J. Y. Huang, Appl. Phys. Lett. 92, 091909 (2008)
[27] https://www.slideshare.net/zubairaslam16/x-ray-photoelectron-spectroscopy
[28] https://ieeexplore-ieee org.er.lib.ncku.edu.tw/stamp/stamp.jsp?tp=&arnumber=6922614
[29] S. B. Zhang, S. H. Wei, and A. Zunger, Phys. Rev. B 63, 075205 (2001).
[30] U. Lampe and J. MCuller, Sens. Actuators 18, 269 (1989).
[31] T. I. Barry and F. S. Stone, Proc. R. Soc. London, Ser. A 255, 124 (1960).
[32] Q.H.Li, T.Gao, Y.G.Wang and T.H.Wang, Appl. Phys. Lett. 86, 123117 (2005).
[33] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, Nano Lett. 7, 1003 (2007).
[34] S. B. Zhang, S. H. Wei, and A. Zunger, Phys. Rev. B 63, 075205 (2001).
[35] Y. Wu, P. M. Hermkens, B. W. H. van de Loo, H. C. M. Knoops, S. E. Potts, M. A. Verheijen, F. Roozeboom, and W. M. M.
[36] Kessels, J. Appl. Phys. 114, 024308 (2013).
[37] W. Gopel, G. Rocker, and R. Feierabend, Phys. Rev. B 28, 3427 (1983).
[38] A. Oprea, N. Barsan, and U. Weimar, Sens. Actuators, B 142, 470 (2009).
[39] Kannan et al. Sens. Actuat. A164 (2010) 8. Elsevier Publishing
[40] G. Heiland, D. Kohl, In: T. Seiyama (Ed.), Chemical Sensors Technology, Elsevier, Amsterdam (1988) p. 15–38.
[41] Robert M. Corn and Daniel A. Higgins, Optical Second Harmonic Generation as a Probe of Surface Chemistry, Chem. Rev.(1994) .
[42] Christopher B. Jacobs, et al. UV-activated ZnO films on a flexible substrate for room temperature O2 and H2O sensing. Scientific reports (2017).
[43] Po-Wei Chi, Chih-Wei Su & Da-Hua Wei. Internal stress induced natural self-chemisorption of ZnO nanostructured films. Scientific reports (2017) .
[44] Abdel-Aziz El Mel, et al. XPS study of the surface composition modification of nc-TiC/C nanocomposite films under in situ argon ion bombardment. Thin Solid Films (2011).
[45]Christof Wo ll. The chemistry and physics of zinc oxide surfaces. Progress in Surface Science (2007).
[46] Kuang Yao Lo, et al. Reflective second harmonic generation from ZnO thin films: A study on the Zn–O bonding. Applied physics letters (2007).
[47] Miki FUJITA, et al. Molecular beam epitaxial growth of ZnO on Si substrateusing ozone as an oxygen source. Japanese journal of applied physics (2003).
  • 同意授權校內瀏覽/列印電子全文服務,於2020-01-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-01-01起公開。

  • 如您有疑問,請聯絡圖書館