進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-3107201814565100
論文名稱(中文) 釩與鎵摻雜氧化鎂鋅薄膜之壓電性質應用於壓電奈米發電機之研究
論文名稱(英文) Investigation of piezoelectric property of V and Ga doped MgZnO thin films for the application of piezoelectric nanogenerator
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 李秉翰
研究生(英文) Ping-Han Lee 李秉翰
學號 N56051352
學位類別 碩士
語文別 中文
論文頁數 112頁
口試委員 指導教授-黃肇瑞
指導教授-劉全璞
口試委員-丁志明
口試委員-張高碩
口試委員-蘇彥勳
中文關鍵字 氧化鋅  氧化鎂鋅  鎵摻雜氧化鎂鋅  壓電係數  壓電奈米發電機 
英文關鍵字 ZnO  MgxZn1-xO  Ga doped MgZnO  Piezoelectric coefficient  Piezoelectric nanogenerator 
學科別分類
中文摘要 氧化鋅(Zinc Oxide, ZnO)為兩價金屬鋅的氧化物,屬於n型的半導體材料,其空間群為P63mc,結構內部主要的缺陷種類為鋅格隙、氧空缺 ,具有直接而且寬的能隙(3.3eV)、六方型纖鋅礦結構及沿著c軸(c-axis)的成長優選取向[0001],此外,氧化鋅又具備壓電及壓光電的性質,使其被廣泛運用在感測器(sensors)、奈米發電機(NGs)、發光二極體(LED)及光感測器(photodetector)。永續能源的發展,從近年來備受討論的能源議題易產生污染的傳統火力發電、核能發電,轉而選擇對環境無害的太陽能、風力及機械能等作為能源來源,其中機械能發電的優勢在於能源的取得相對方便,存在生活周遭且不易受到氣候所影響。機械能供電也能被微型化製作為奈米發電機,結合自發電(self-powered)的概念,利用奈米發電機供應另一裝置電能,將電能的產生裝置結合工作裝置同時應用於元件端,對於未來可攜帶式裝置有深遠的影響。
本研究著重於氧化鋅材料的延伸探討,目的是為了強化氧化鋅的壓電係數(12.4 pm/V),藉由射頻磁控濺鍍系統,採用氧化鎂鋅單靶將鎂以合金化的方式製作為薄膜並成長在(111) p型矽基板上,固定基板溫度並改變濺鍍氣氛(Ar、O2)的流量,以達到最佳壓電係數之薄膜中的鎂含量(XMg = 0.285),利用鎂置換氧化鋅中的鋅離子能夠優化壓電係數,提升能隙範圍,並同時改變氧化鋅之晶體結構及鍵結型態。文獻中證實釩置換氧化鋅中的鋅離子,能夠提升材料之壓電係數,強化結構的機電性質;此外,三族元素(Al、Ga、In及Tl)摻雜氧化鎂鋅薄膜能夠提升材料的電性質,同時又具備良好的光學穿透性,多被應用於透明導電膜(TCO);其中鎵摻雜氧化鎂鋅薄膜最具備改善材料的晶體結構並強化優選方向[0001]的能力。氧化鎂鋅達到最佳壓電係數為22.64 pm/V,進而以摻雜的方式,分別以氧化釩、氧化鎵靶材與氧化鎂鋅合金靶材共濺鍍,使釩與鎵置換氧化鎂鋅薄膜晶體結構中的鎂、鋅離子,並能改變結構、鍵結型態及壓電係數。協同合金化及摻雜之結合效應於氧化鋅中,探討此結合效應於壓電性質的調整,進一步研發並衍伸出具備多種功能之壓電元件。由分析結果顯示,釩摻雜氧化鎂鋅薄膜,間接提升薄膜鎂含量接近相轉換區域,使薄膜的柱狀結構逐漸消失,同時存在不穩定的鍵結型態,造成釩摻雜氧化鎂鋅無法有效提升壓電係數。然而,鎵摻雜氧化鎂鋅薄膜具備明顯的柱狀結構,顯示出晶粒沿著[0001]方向成長,於中度鎵摻雜約1.77 at%,鎵與鎂的結合效應於氧化鋅中達到平衡,薄膜具有最高的壓電係數(~40 pm/V)約為氧化鋅的三倍,證明了鎂合金化結合鎵摻雜不僅可以應用於光學元件上,亦能夠有效提升氧化鋅薄膜的壓電係數。最後,本研究進一步將鎵摻雜氧化鎂鋅薄膜應用於壓電型奈米發電機元件,證明鎵摻雜能夠將壓電性質的改善延伸至奈米發電機的輸出。
本研究選用具備最佳壓電係數之鎵摻雜氧化鎂鋅薄膜並將其製作為奈米發電機元件,並與未摻雜之氧化鎂鋅做比較。結果顯示出不同工作頻率下的輸出電流密度與電壓,鎵摻雜後的薄膜均有較佳的輸出表現,工作頻率為2 Hz的鎵摻雜氧化鎂鋅薄膜輸出約15 nA/cm*2及0.1V的電流密度與電壓;接著將元件於固定應力下量測電流—電壓曲線,能夠由電流值差異推算出蕭特基能障的下降4.90 meV,由上述量測證實鎵摻雜氧化鎂鋅薄膜能夠將材料的優化繼續延伸至元件端,且若進一步優化元件之製作,將具備提升輸出的潛力。
英文摘要 The piezoelectric nanogenerators based on MgZnO can convert the mechanical energy into electrical energy via piezoelectric effect and are considered to be the promising environmentally friendly devices. We investigate the effect of Ga doping over the piezoelectric property of MgZnO thin films deposited on p-type Si (111) substrates through RF magnetron sputtering. The deposition is carried out at a fixed temperature (250"℃" ) under argon (10 sccm)/oxygen (20 sccm) atmosphere and the thickness is maintained at around 500 nm. All of the films exhibit wurtzite structure with strong [0002] preferential orientation. In addition, gallium doping influences the magnesium concentration in Ga doped MgZnO films which balances the lattice deformation formed by the larger gallium and smaller magnesium at zinc site. The piezoelectric coefficient (d33) is improved to 40.32 pm/V at a gallium concentration (XGa) of 0.041 as that with pure ZnO (d33 ~ 12.4 pm/V). Ga doped MgZnO thin films have great potential to be fabricated as piezoelectric nanogenerators.
論文目次 摘要...................................................................................... I
Extended Abstract................................................................ III
致謝...................................................................................... XVII
總目錄.................................................................................. XIX
表目錄.................................................................................. XXII
圖目錄.................................................................................. XXIII
第一章、緒論........................................................................ 1
1.1. 前言................................................................................ 1
1.2. 實驗動機與目的.............................................................. 3
第二章、文獻回顧................................................................. 4
2.1. 濺鍍系統........................................................................ 4
2.1.1. 濺鍍原理...................................................................... 4
2.1.2. 射頻磁控濺鍍............................................................... 7
2.2. 氧化鋅性質.................................................................... 10
2.2.1. 晶體結構..................................................................... 10
2.2.2. 物理性質..................................................................... 12
2.2.3. 本質缺陷..................................................................... 14
2.3. 壓電性與壓電極化.......................................................... 17
2.3.1. 壓電材料..................................................................... 17
2.4. 氧化鎂鋅合金系統及摻雜效應........................................ 23
2.5. 釩摻雜........................................................................... 26
2.5.1. 釩氧化物..................................................................... 26
2.5.2. 釩摻雜氧化鋅.............................................................. 28
2.6. 鎵摻雜........................................................................... 29
2.6.1. 鎵氧化物..................................................................... 29
2.6.2. 鎵摻雜氧化鋅.............................................................. 31
2.7. 壓電型奈米發電機.......................................................... 33
2.7.1. 未來能源與永續發展的重要性...................................... 33
2.7.2. 奈米發電機原理及應用................................................ 35
第三章、研究方法與實驗步驟............................................... 39
3.1. 實驗流程圖..................................................................... 39
3.2. 實驗材料........................................................................ 40
3.3. 實驗設備........................................................................ 40
3.4. 濺鍍的步驟與條件.......................................................... 41
3.4.1. 基板前處理.................................................................. 41
3.4.2. 薄膜濺鍍流程.............................................................. 41
3.4.3. 元件製作..................................................................... 43
3.5. 薄膜的性質分析.............................................................. 44
3.5.1. 晶體結構分析............................................................... 44
3.5.2. 表面形貌與微結構分析................................................. 44
3.5.3. 元素成分與化學鍵結分析.............................................. 45
3.5.4. 光學性質分析............................................................... 46
3.5.5. 壓電係數分析............................................................... 46
3.6. 元件之壓電特性與敏感度分析.......................................... 47
第四章、薄膜製備之結果與討論............................................. 48
4.1.不同濺鍍氣氛對於氧化鎂鋅薄膜的影響............................. 48
4.1.1. 晶體結構分析................................................................ 48
4.1.2. 表面形貌與微結構分析.................................................. 51
4.1.3. 元素成分分析............................................................... 54
4.1.4. 壓電係數分析............................................................... 56
4.2. 釩摻雜對於氧化鎂鋅薄膜的影響...................................... 58
4.2.1. 晶體結構分析............................................................... 58
4.2.2. 表面形貌與微結構分析................................................. 61
4.2.3. 元素成分與化學鍵結分析.............................................. 64
4.2.4. 壓電係數分析............................................................... 68
4.3. 鎵摻雜對於氧化鎂鋅薄膜的影響...................................... 70
4.3.1. 晶體結構分析............................................................... 70
4.3.2. 表面形貌與微結構分析................................................. 75
4.3.3. 元素成分與化學鍵結分析.............................................. 80
4.3.4. 光學性質分析............................................................... 85
4.3.5. 壓電性質分析............................................................... 89
第五章、元件量測之結果與討論............................................. 93
5.1. 奈米發電機量測............................................................... 93
5.2. 壓力敏感度分析.............................................................. 100
第六章、結論........................................................................ 103
參考文獻............................................................................... 105

參考文獻 [1] Z. L. Wang and J. Song, "Piezoelectric nanogenerators based on zinc oxide nanowire arrays," Science, vol. 312, no. 5771, pp. 242-246, 2006.
[2] Q. Wang, D. Yang, Y. Qiu, X. Zhang, W. Song, and L. Hu, "Two-dimensional ZnO nanosheets grown on flexible ITO-PET substrate for self-powered energy-harvesting nanodevices," Applied Physics Letters, vol. 112, no. 6, p. 063906, 2018.
[3] M. Akiyama, T. Kamohara, K. Kano, A. Teshigahara, Y. Takeuchi, and N. Kawahara, "Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering," Advanced Materials, vol. 21, no. 5, pp. 593-596, 2009.
[4] T. Makino et al., "Band gap engineering based on MgxZn1−xO and CdyZn1−yO ternary alloy films," Applied Physics Letters, vol. 78, no. 9, pp. 1237-1239, 2001.
[5] S. Vijayalakshmi, S. Venkataraj, and R. Jayavel, "Characterization of cadmium doped zinc oxide (Cd: ZnO) thin films prepared by spray pyrolysis method," Journal of Physics D: Applied Physics, vol. 41, no. 24, p. 245403, 2008.
[6] W. Yang et al., "Compositionally-tuned epitaxial cubic Mg x Zn 1− x O on Si (100) for deep ultraviolet photodetectors," Applied Physics Letters, vol. 82, no. 20, pp. 3424-3426, 2003.
[7] V. Bhosle, A. Tiwari, and J. Narayan, "Electrical properties of transparent and conducting Ga doped ZnO," Journal of Applied Physics, vol. 100, no. 3, p. 033713, 2006.
[8] M. Laurenti et al., "Nanobranched ZnO structure: p‐type doping induces piezoelectric voltage generation and ferroelectric–photovoltaic effect," Advanced Materials, vol. 27, no. 28, pp. 4218-4223, 2015.
[9] Y.-T. Chang et al., "Excellent piezoelectric and electrical properties of lithium-doped ZnO nanowires for nanogenerator applications," Nano Energy, vol. 8, pp. 291-296, 2014.
[10] Y. Yang, C. Song, X. Wang, F. Zeng, and F. Pan, "Cr-substitution-induced ferroelectric and improved piezoelectric properties of Zn 1− x Cr x O films," Journal of Applied Physics, vol. 103, no. 7, p. 074107, 2008.
[11] J. Park, Y. Lee, M. Ha, S. Cho, and H. Ko, "Micro/nanostructured surfaces for self-powered and multifunctional electronic skins," Journal of Materials Chemistry B, vol. 4, no. 18, pp. 2999-3018, 2016.
[12] 羅硯, "濺鍍成長氧化鎂鋅薄膜之微結構及光學性質," 2010.
[13] A. Ohtomo et al., "Mg x Zn 1− x O as a II–VI widegap semiconductor alloy," Applied Physics Letters, vol. 72, no. 19, pp. 2466-2468, 1998.
[14] P. Sigmund, "Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets," Physical review, vol. 184, no. 2, p. 383, 1969.
[15] D. E. Harrison Jr, "Theory of the sputtering process," Physical Review, vol. 102, no. 6, p. 1473, 1956.
[16] M. Kamalasanan and S. Chandra, "Sol-gel synthesis of ZnO thin films," Thin Solid Films, vol. 288, no. 1-2, pp. 112-115, 1996.
[17] D. J. Kester and R. Messier, "Phase control of cubic boron nitride thin films," Journal of applied physics, vol. 72, no. 2, pp. 504-513, 1992.
[18] E. B. Henschke, "New collision theory of cathode sputtering of metals at low ion energies," Physical Review, vol. 106, no. 4, p. 737, 1957.
[19] T. Kawaharamura, "Physics on development of open-air atmospheric pressure thin film fabrication technique using mist droplets: Control of precursor flow," Japanese Journal of Applied Physics, vol. 53, no. 5S1, p. 05FF08, 2014.
[20] S. Hussain et al., "Synthesis and characterization of large-area and continuous MoS 2 atomic layers by RF magnetron sputtering," Nanoscale, vol. 8, no. 7, pp. 4340-4347, 2016.
[21] R. Bosco, J. Van Den Beucken, S. Leeuwenburgh, and J. Jansen, "Surface engineering for bone implants: a trend from passive to active surfaces," Coatings, vol. 2, no. 3, pp. 95-119, 2012.
[22] P. Kelly and R. Arnell, "Magnetron sputtering: a review of recent developments and applications," Vacuum, vol. 56, no. 3, pp. 159-172, 2000.
[23] Ü. Özgür et al., "A comprehensive review of ZnO materials and devices," Journal of applied physics, vol. 98, no. 4, p. 11, 2005.
[24] C. Ottone, M. Laurenti, P. Motto, S. Stassi, D. Demarchi, and V. A. Cauda, "ZnO nanowires: Synthesis approaches and electrical properties," Nanowires. Synthesis, Electrical Properties and Uses in Biological Systems; Nova Publisher: New York, NY, USA, pp. 1-57, 2014.
[25] H. Morkoç and Ü. Özgür, Zinc oxide: fundamentals, materials and device technology. John Wiley & Sons, 2008.
[26] T. Hanada, "Basic properties of ZnO, GaN, and related materials," in Oxide and nitride semiconductors: Springer, 2009, pp. 1-19.
[27] X.-Y. Feng, Z. Wang, C.-W. Zhang, and P.-J. Wang, "Electronic structure and energy band of IIIA doped group ZnO nanosheets," Journal of Nanomaterials, vol. 2013, p. 61, 2013.
[28] E. R. Weber, Semiconductors and semimetals. Academic Press, 1993.
[29] A. Janotti and C. G. Van de Walle, "Native point defects in ZnO," Physical Review B, vol. 76, no. 16, p. 165202, 2007.
[30] S. Brahma, J. Khatei, S. Sunkara, K. Lo, and S. Shivashankar, "Self-assembled ZnO nanoparticles on ZnO microsheet: ultrafast synthesis and tunable photoluminescence properties," Journal of Physics D: Applied Physics, vol. 48, no. 22, p. 225305, 2015.
[31] S. Pearton, D. Norton, K. Ip, Y. Heo, and T. Steiner, "Recent progress in processing and properties of ZnO," Progress in materials science, vol. 50, no. 3, pp. 293-340, 2005.
[32] V. Srikant and D. R. Clarke, "On the optical band gap of zinc oxide," Journal of Applied Physics, vol. 83, no. 10, pp. 5447-5451, 1998.
[33] S. Hasegawa, S. Nishida, T. Yamashita, and H. Asahi, "Field electron emission from polycrystalline GaN nanorods," Journal of Ceramic Processing & Research, vol. 6, no. 3, pp. 245-249, 2005.
[34] M.-H. Zhao, Z.-L. Wang, and S. X. Mao, "Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope," Nano Letters, vol. 4, no. 4, pp. 587-590, 2004.
[35] J. Christman, H. Maiwa, S.-H. Kim, A. Kingon, and R. Nemanich, "Piezoelectric measurements with atomic force microscopy," MRS Online Proceedings Library Archive, vol. 541, 1998.
[36] J. Curie, "Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées," Bull. Soc. Fr. Mineral., vol. 3, p. 90, 1880.
[37] R. Turner, P. A. Fuierer, R. Newnham, and T. Shrout, "Materials for high temperature acoustic and vibration sensors: A review," Applied acoustics, vol. 41, no. 4, pp. 299-324, 1994.
[38] P. Panda and B. Sahoo, "PZT to lead free piezo ceramics: a review," Ferroelectrics, vol. 474, no. 1, pp. 128-143, 2015.
[39] Z. L. Wang, "Zinc oxide nanostructures: growth, properties and applications," Journal of physics: condensed matter, vol. 16, no. 25, p. R829, 2004.
[40] F. R. Fan, W. Tang, and Z. L. Wang, "Flexible nanogenerators for energy harvesting and self‐powered electronics," Advanced Materials, vol. 28, no. 22, pp. 4283-4305, 2016.
[41] C. Tang, M. J. Spencer, and A. S. Barnard, "Activity of ZnO polar surfaces: an insight from surface energies," Physical Chemistry Chemical Physics, vol. 16, no. 40, pp. 22139-22144, 2014.
[42] Z. Gao et al., "Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor," Journal of applied physics, vol. 105, no. 11, p. 113707, 2009.
[43] R. Yu, S. Niu, C. Pan, and Z. L. Wang, "Piezotronic effect enhanced performance of Schottky-contacted optical, gas, chemical and biological nanosensors," Nano Energy, vol. 14, pp. 312-339, 2015.
[44] L. Huo, D. Chen, Q. Kong, H. Li, and G. Song, "Smart washer—A piezoceramic-based transducer to monitor looseness of bolted connection," Smart Materials and Structures, vol. 26, no. 2, p. 025033, 2017.
[45] R. E. Eitel, "Novel piezoelectric ceramics: development of high temperature, high performance piezoelectrics on the basis of structure," 2003.
[46] J. Sarver, F. L. Katnack, and F. Hummel, "Phase Equilibria and Manganese‐Activated Fluorescence in the System Zn3 (PO 4) 2‐Mg3 (PO 4) 2," Journal of The Electrochemical Society, vol. 106, no. 11, pp. 960-963, 1959.
[47] A. Schleife, F. Fuchs, J. Furthmüller, and F. Bechstedt, "First-principles study of ground-and excited-state properties of MgO, ZnO, and CdO polymorphs," Physical Review B, vol. 73, no. 24, p. 245212, 2006.
[48] J. Luo, Y. Yang, X. Zhu, G. Chen, F. Zeng, and F. Pan, "Enhanced electromechanical response of Fe-doped ZnO films by modulating the chemical state and ionic size of the Fe dopant," Physical Review B, vol. 82, no. 1, p. 014116, 2010.
[49] M. Glinchuk, E. Kirichenko, V. Stephanovich, and B. Zaulychny, "Nature of ferroelectricity in nonperovskite semiconductors like ZnO: Li," Journal of Applied Physics, vol. 105, no. 10, p. 104101, 2009.
[50] N. Sinha et al., "Y-doped ZnO nanosheets: Gigantic piezoelectric response for an ultra-sensitive flexible piezoelectric nanogenerator," Ceramics International, 2018.
[51] R. D. Shannon, "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides," Acta crystallographica section A: crystal physics, diffraction, theoretical and general crystallography, vol. 32, no. 5, pp. 751-767, 1976.
[52] A. Chakrabarti, K. Hermann, R. Druzinic, M. Witko, F. Wagner, and M. Petersen, "Geometric and electronic structure of vanadium pentoxide: A density functional bulk and surface study," Physical review B, vol. 59, no. 16, p. 10583, 1999.
[53] Y. Yang, C. Song, X. Wang, F. Zeng, and F. Pan, "Giant piezoelectric d 33 coefficient in ferroelectric vanadium doped ZnO films," Applied Physics Letters, vol. 92, no. 1, p. 012907, 2008.
[54] M. Laurenti, M. Castellino, D. Perrone, A. Asvarov, G. Canavese, and A. Chiolerio, "Lead-free piezoelectrics: V 3+ to V 5+ ion conversion promoting the performances of V-doped Zinc Oxide," Scientific reports, vol. 7, p. 41957, 2017.
[55] S. Stepanov, V. Nikolaev, V. Bougrov, and A. Romanov, "Gallium oxide: properties and applica a review," Rev. Adv. Mater. Sci, vol. 44, pp. 63-86, 2016.
[56] W.-S. Liu, W.-K. Chen, and K.-P. Hsueh, "Transparent conductive Ga-doped MgxZn1− xO films with high optical transmittance prepared by radio frequency magnetron sputtering," Journal of Alloys and Compounds, vol. 552, pp. 255-263, 2013.
[57] S.-H. Jeong, J.-H. Park, and B.-T. Lee, "Doping effects of group-IIIA elements on physical properties of ZnMgXO (X: Al, Ga, In, Tl) transparent conducting oxide films prepared by RF magnetron sputtering," Journal of Alloys and Compounds, vol. 617, pp. 52-57, 2014.
[58] S. W. Shin et al., "Development of flexible Mg and Ga co-doped ZnO thin films with wide band gap energy and transparent conductive characteristics," Journal of Alloys and Compounds, vol. 585, no. Supplement C, pp. 608-613, 2014.
[59] J.-H. Lee, K. Y. Lee, B. Kumar, and S.-W. Kim, "Synthesis of Ga-doped ZnO nanorods using an aqueous solution method for a piezoelectric nanogenerator," Journal of nanoscience and nanotechnology, vol. 12, no. 4, pp. 3430-3433, 2012.
[60] T. Zhao, Y. Fu, Y. Zhao, L. Xing, and X. Xue, "Ga-doped ZnO nanowire nanogenerator as self-powered/active humidity sensor with high sensitivity and fast response," Journal of Alloys and Compounds, vol. 648, no. Supplement C, pp. 571-576, 2015.
[61] A. Abduev, A. Akmedov, A. Asvarov, and A. Chiolerio, "A revised growth model for transparent conducting Ga doped ZnO films: improving crystallinity by means of buffer layers," Plasma Processes and Polymers, vol. 12, no. 8, pp. 725-733, 2015.
[62] M. Dresselhaus and I. Thomas, "Alternative energy technologies," Nature, vol. 414, no. 6861, p. 332, 2001.
[63] P. Glynne-Jones and N. M. White, "Self-powered systems: a review of energy sources," Sensor review, vol. 21, no. 2, pp. 91-98, 2001.
[64] Z. L. Wang, "Nanogenerators and Nanopiezotronics," in Electron Devices Meeting, 2007. IEDM 2007. IEEE International, 2007, pp. 371-374: IEEE.
[65] Y. Hu and Z. L. Wang, "Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors," Nano Energy, vol. 14, pp. 3-14, 2015.
[66] Y. Hu, Y. Zhang, C. Xu, L. Lin, R. L. Snyder, and Z. L. Wang, "Self-powered system with wireless data transmission," Nano letters, vol. 11, no. 6, pp. 2572-2577, 2011.
[67] A. Proto, M. Penhaker, S. Conforto, and M. Schmid, "Nanogenerators for Human Body Energy Harvesting," Trends in Biotechnology, vol. 35, no. 7, pp. 610-624, 2017.
[68] X. Wang and J. Shi, "Piezoelectric nanogenerators for self-powered nanodevices," in Piezoelectric Nanomaterials for Biomedical Applications: Springer, 2012, pp. 135-172.
[69] C. H. Wang et al., "Optimization of the output efficiency of GaN nanowire piezoelectric nanogenerators by tuning the free carrier concentration," Advanced Energy Materials, vol. 4, no. 16, 2014.
[70] Z. L. Wang, "Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics," Nano Today, vol. 5, no. 6, pp. 540-552, 2010.
[71] H. K. Park et al., "Charge‐Generating Mode Control in High‐Performance Transparent Flexible Piezoelectric Nanogenerators," Advanced Functional Materials, vol. 21, no. 6, pp. 1187-1193, 2011.
[72] S. N. Cha et al., "Sound‐driven piezoelectric nanowire‐based nanogenerators," Advanced materials, vol. 22, no. 42, pp. 4726-4730, 2010.
[73] S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. L. Wang, "Self-powered nanowire devices," Nature nanotechnology, vol. 5, no. 5, p. 366, 2010.
[74] R. Hong, H. Qi, J. Huang, H. He, Z. Fan, and J. Shao, "Influence of oxygen partial pressure on the structure and photoluminescence of direct current reactive magnetron sputtering ZnO thin films," Thin Solid Films, vol. 473, no. 1, pp. 58-62, 2005.
[75] J.-S. Shiau, S. Brahma, C.-P. Liu, and J.-L. Huang, "Ultraviolet photodetectors based on MgZnO thin film grown by RF magnetron sputtering," Thin Solid Films, vol. 620, pp. 170-174, 2016.
[76] M. Laurenti, S. Porro, C. F. Pirri, C. Ricciardi, and A. Chiolerio, "Zinc Oxide Thin Films for Memristive Devices: A Review," Critical Reviews in Solid State and Materials Sciences, vol. 42, no. 2, pp. 153-172, 2017.
[77] H. Chen, J. Ding, and S. Ma, "Structural and optical properties of ZnO:Mg thin films grown under different oxygen partial pressures," Physica E: Low-dimensional Systems and Nanostructures, vol. 42, no. 5, pp. 1487-1491, 2010.
[78] B.-C. Zhou, S.-L. Shang, Y. Wang, and Z.-K. Liu, "Diffusion coefficients of alloying elements in dilute Mg alloys: A comprehensive first-principles study," Acta Materialia, vol. 103, pp. 573-586, 2016.
[79] Y. J. Chen, S. Brahma, C. P. Liu, and J.-L. Huang, "Enhancement of the piezoelectric coefficient in hexagonal MgxZn1-xO films at lower Mg compositions," Journal of Alloys and Compounds, vol. 728, pp. 1248-1253, 2017.
[80] A. Dal Corso, M. Posternak, R. Resta, and A. Baldereschi, "Ab initio study of piezoelectricity and spontaneous polarization in ZnO," Physical Review B, vol. 50, no. 15, p. 10715, 1994.
[81] Dhananjay and S. Krupanidhi, "Dielectric properties of c-axis oriented Zn 1− x Mg x O thin films grown by multimagnetron sputtering," Applied physics letters, vol. 89, no. 8, p. 082905, 2006.
[82] A. Onodera, N. Tamaki, K. Jin, and H. Yamashita, "Ferroelectric Properties in Piezoelectric Semiconductor Zn 1-xMxO (M= Li, Mg)," Japanese journal of applied physics, vol. 36, no. 9S, p. 6008, 1997.
[83] Y.-H. Hu et al., "Texture ZnO thin-films and their application as front electrode in solar cells," Engineering, vol. 2, no. 12, p. 973, 2010.
[84] Q.-B. Ma et al., "Effects of Mg doping on the properties of highly transparent conductive and near infrared reflective Zn1− xMgxO: Ga films," Journal of Solid State Chemistry, vol. 181, no. 3, pp. 525-529, 2008.
[85] S.-M. Park, T. Ikegami, and K. Ebihara, "Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition," Thin Solid Films, vol. 513, no. 1-2, pp. 90-94, 2006.
[86] A. Hassanien, K. Aly, and A. A. Akl, "Study of optical properties of thermally evaporated ZnSe thin films annealed at different pulsed laser powers," Journal of Alloys and Compounds, vol. 685, pp. 733-742, 2016.
[87] K.-P. Hsueh and P.-W. Cheng, "Effects of rapid thermal annealing on properties of Ga-doped MgxZn1− xO films and Ga-doped MgxZn1− xO/AlGaN heterojunction diodes," Journal of Applied Physics, vol. 116, no. 6, p. 063501, 2014.
[88] H. Zhang et al., "Mg composition dependent band offsets of Zn 1− x Mg x O/ZnO heterojunctions," Physical Chemistry Chemical Physics, vol. 15, no. 27, pp. 11231-11235, 2013.
[89] Y. Ke et al., "Enhanced Electron Mobility Due to Dopant‐Defect Pairing in Conductive ZnMgO," Advanced Functional Materials, vol. 24, no. 19, pp. 2875-2882, 2014.
[90] P. P. Rajbhandari, A. Bikowski, J. D. Perkins, T. P. Dhakal, and A. Zakutayev, "Combinatorial sputtering of Ga-doped (Zn, Mg) O for contact applications in solar cells," Solar Energy Materials and Solar Cells, vol. 159, pp. 219-226, 2017.
[91] M. Saha, S. Ghosh, V. D. Ashok, and S. De, "Carrier concentration dependent optical and electrical properties of Ga doped ZnO hexagonal nanocrystals," Physical Chemistry Chemical Physics, vol. 17, no. 24, pp. 16067-16079, 2015.
[92] X. Wang, C. Song, D. Li, K. Geng, F. Zeng, and F. Pan, "The influence of different doping elements on microstructure, piezoelectric coefficient and resistivity of sputtered ZnO film," Applied Surface Science, vol. 253, no. 3, pp. 1639-1643, 2006.
[93] K. Nakamura, S. Higuchi, and T. Ohnuma, "Enhancement of piezoelectric constants induced by cation-substitution and two-dimensional strain effects on ZnO predicted by density functional perturbation theory," Journal of Applied Physics, vol. 119, no. 11, p. 114102, 2016.
[94] J. Molarius, J. Kaitila, T. Pensala, and M. Ylilammi, "Piezoelectric ZnO films by r.f. sputtering," Journal of Materials Science: Materials in Electronics, journal article vol. 14, no. 5, pp. 431-435, May 01 2003.
[95] X. Wang, D. Li, F. Zeng, and F. Pan, "Microstructure and properties of Cu-doped ZnO films prepared by dc reactive magnetron sputtering," Journal of Physics D: Applied Physics, vol. 38, no. 22, p. 4104, 2005.
[96] T. Kamohara, M. Akiyama, N. Ueno, K. Nonaka, and N. Kuwano, "Influence of aluminum nitride interlayers on crystal orientation and piezoelectric property of aluminum nitride thin films prepared on titanium electrodes," Thin solid films, vol. 515, no. 11, pp. 4565-4569, 2007.
[97] Y. Liu, Y. Zhang, Q. Yang, S. Niu, and Z. L. Wang, "Fundamental theories of piezotronics and piezo-phototronics," Nano Energy, vol. 14, pp. 257-275, 2015.
[98] J. Zhou et al., "Flexible piezotronic strain sensor," Nano letters, vol. 8, no. 9, pp. 3035-3040, 2008.
[99] W. Yuan, J. Smits, P. Dominguez, C. Cantor, and C. Smith, "Current-voltage properties of piezoelectric thin film ZnO in a micromechanical force sensor," in Ultrasonics Symposium, 1998. Proceedings., 1998 IEEE, 1998, vol. 1, pp. 593-596: IEEE.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-07-12起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-07-12起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw