進階搜尋


 
系統識別號 U0026-3107201515453800
論文名稱(中文) 具有垂直導電結構之氮化鎵光子轉換元件
論文名稱(英文) GaN-based photon conversion devices with vertical-conduction structure
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 103
學期 2
出版年 104
研究生(中文) 陳復邦
研究生(英文) Fu-Bang Chen
學號 L78991055
學位類別 博士
語文別 英文
論文頁數 111頁
口試委員 指導教授-許進恭
召集委員-杜立偉
口試委員-張守進
口試委員-王永和
口試委員-賴韋志
口試委員-許世昌
口試委員-許晉瑋
口試委員-郭政煌
中文關鍵字 氮化鎵  光子循環發光二極體  白光  太陽能電池  垂直式導電結構 
英文關鍵字 GaN-based  photon-recycling light-emitting diodes (PRLEDs)  white light  indicative microrod structure  solar cell  vertical-conduction structure 
學科別分類
中文摘要 太陽提供了地球能量,人類文明得以存在與茁壯;電力為世界帶來了進步之鑰, 科技與工業得以飛快的發展。光電元件存在光子與電子的轉換關係,是近代物理的重要的研究,其廣泛應用於通用照明、顯示器、特用光源、感測器、太陽能電池等等...。氮化鎵光電半導體有著優異的寬直接能隙特性,是當今公認最有潛力的光電材料之一,其研究在此近二十多年來有著顯著的突破。本論文利用良好散熱與優異的軸向光特性之垂直式晶片結構為標準平台,來探討氮化鎵材料光子轉換元件的特性。
在光子循環發光二極體元件之研究, 第一部分,我們提出一種單晶介面綠光之光子循環垂直式發光二極體元件之磊晶與晶片元件之設計,利用紫外光為激發光源,以光激光方式使光子循環量子井產生綠光。此結構與直接型式之垂直式綠光發光二極體相比,能在高電流密度操作下具有較佳之發光效率趨勢。我們推論載子在光激光量子井結構能有效的均勻分散,不再侷限於接近P型區域之少數活性層,故能減少歐傑複合與電子溢流。本研究提供未來在高電流密度操作下,高效率的更長之波長綠光之發展方向。第二部分,利用光子循環發光二極體製作高演色性暖白光,以405 nm紫光同時激發468與537 nm的藍光與綠光,此三波長的光子循環發光二極體再加入紅色螢光粉,可製做出高演色性暖白光。有別於傳統藍光激發多種螢光粉以產生高演色白光方法,本實驗使用單一紅色螢光粉,有助於穩定製程與提升良率。另外,其具有多個特徵光譜,亦可能應用於光通訊技術。第三部分為利用光子轉換方法來提升紫外光使用安全,我們提出微柱狀光子循環量子井結構,能將少部分不可見與高能量紫外光轉換成可察覺與低能量之指示性綠光,此結構兼具提升光萃取之表面粗化功能。在晶片設計上,可定義不同面積的指示性微柱狀結構,達到不同的綠光對紫外光之轉換比例,此轉換具良好線性度。利用此特性,有利晶片設計以達需要之能量轉換比。在太陽能電池元件的研究方面, 氮化鎵材料有著寬直接能隙與優異的材料穩定度,適合於高聚光堆疊式太陽能電池。首先我們探討綠色波段量子井之最佳光電效應結構,製做垂直式導電結構氮化鎵太陽能電池,其具備著優異之反射鏡與散熱特性,在極高的聚光條件下,不會造成轉換效率衰減。在300倍太陽光照射條件下,其太陽光能量轉換效率能有效增加,未來有機會應用於極高聚光型之太陽能系統。
光子轉換元件的製作,需要整合磊晶,晶片與封裝技術。本研究使用優化之磊晶設計與成長,將光轉換層與激發光源一起磊晶成長,相對於其它以黏著方式整合之設計,更具有良好的光子穿透特性與穩定的界面特性。光子循環元件有機會製造高效率與長波長之綠光元件、高演色性的白光照明、更安全的紫外光固化技術、更快速穩定的光通元件與更高效率的綠色太陽能電池。
英文摘要 The sun provides energy to the Earth, which allows humans to survive dynamically and civilizations to develop and prosper. Electricity is the key to rapid progress of science and industries. Optoelectronic phenomena involve transformation of photons and electrons, which is one of the most important discoveries in modern physics. Photons and electrons are often applied in general lighting, displays, sensors, lasers, illumination sources, and solar cells. The III-nitride semiconductor material, which has a wide direct bandgap and excellent stability, has significantly progressed in the last two decades. This dissertation studies GaN-based photon conversion devices with a vertical-conduction structure and excellent thermal dissipation and light extraction characteristics.
The first part of this study focuses on photon-recycling light-emitting diodes (PRLEDs). First, green PRLED has a high potential in achieving high green light efficiency under high current density. Green InGaN/GaN multiple quantum well (MQW) converter structures with near-ultraviolet (n-UV) pumping source are epitaxially grown on a sapphire substrate simultaneously. Green quantum wells (QWs) are pumped with n-UV light to reemit low-energy photons when light emitting diodes (LEDs) are electrically driven with a forward current. Efficiency droop is potentially insignificant compared with direct green LEDs because of increased active layer effective volume in optically pumped green LEDs. Compared with direct green LEDs, light emitting green PRLEDs are no longer limited in the QWs that are nearest to the p-type region, which can cause severe Auger recombination and carrier overflow losses.
Second, a trichromatic GaN-based LED that emits n-UV blue and green peaks is combined with single red phosphor to generate white light with a high color rendering index (CRI) and a low correlated color temperature (CCT). Similar to the structure of green PRLEDs, blue and green InGaN/GaN MQWs are pumped with n-UV light to reemit low-energy photons when the trichromatic PRLEDs are electrically driven with a forward current. The emission spectrum includes three peaks at approximately 405, 468, and 537 nm. Furthermore, the chips are combined with red phosphor to generate white light with a high CRI of 92 at 2900 K color temperature.
Third, a new microrod-like structure of photon-recycling MQW is proposed, which is different from previous film-type PRLEDs. A safety UV-LED using an indicative microrod structure is demonstrated through this structure to ensure that the invisible and hazardous high photonic energy UV light can be sensed by using the excited eye-sensible green indicator light. Different areas of photon-recycling green MQW could be defined through the vertical chip process, and the ratio of green and UV light can be changed effectively. A microrod structure is suitable to indicate a UV-range with high efficiency and stable conversion within a wide driving current range.
The second part of this dissertation focuses on photovoltaic and demonstrates InGaN/GaN-based photovoltaic using a metal reflector sandwiched between GaN-based epitaxial layers and a silicon substrate. The photovoltaic could increase the effective thickness of an absorption layer. Given the high thermal conductivity of a structure, solar cells do not show power conversion efficiency (PCE) degradation even under very high concentrations of sunlight. With 300-sun illumination, PCE is enhanced by approximately 33% compared with 1-sun illumination. Vertical GaN-based solar cell provides a great opportunity for future applications of highly concentrated solar system. New devices will probably be invented in the near future based on the photon converting technology, and such inventions will benefit humans.
論文目次 Contents

Abstract (Chinese) .............................................................................................ii
Abstract (English) .............................................................................................iii
Acknowledge .....................................................................................................v
Contents ............................................................................................................vi
Table Captions..................................................................................................viii
Figure Captions................................................................................................viii

Chapter 1 Introduction......................................................................................1
1.1 III-nitride semiconductor........................................................................1
1.2 LED efficiency........................................................................................2
1.3 Vertical conduction structure and vertical solar cell...............................6
1.4 Photon recycling LEDs.........................................................................11
1.5 UVLED using photon-recycling structure for safety indication….......16
1.6 Research in this thesis...........................................................................17
Reference in chapter 1 ………………………………………………….30

Chapter 2 Experiment Method and Sample Preparation.............................36
2.1 Overview of the experiment method.....................................................36
2.2 Direct LED............................................................................................38
2.3 Green and blue PRLEDs…...................................................................38
2.4 White PRLED.......................................................................................41
2.5 UVLEDs with an indicative microrod structure...................................42
Reference in chapter 2 ………………………………………………….57

Chapter 3 GaN-based Photon-Recycling Green and Blue Light-Emitting Diodes with Vertical-Conduction Structures.....................................58
3.1 Characteristics of the GaN-based green and blue photon-recycling LEDs…58
3.2 Mechanisms of efficiency droop for green-PRLEDs...........................59
3.3 Using blue-PRLEDs to clarify the droop phenomenon.......................62
Reference in chapter 3 …………………………………………………..73

Chapter 4 Warm-White LEDs with High Color Rendering Index Fabricated by Combining Trichromatic InGaN Emitter with Single Red Phosphor….75
4.1 Characteristics of vertical InGaN/GaN/Si PRLEDs combined with single red phosphor……………...............................................................................75
4.2 Optical performances of PRLED+Red_WLEDs under different driving currents………………………………….................................................77
Reference in chapter 4 …………………………….………………………….85

Chapter 5 Invisible High Energy UV LEDs with an Indicative Microrod Structure for Green Emission.......................................................................................86
5.1 Characteristics of indicative microrod structure UV LEDs.....................86
5.2 Characteristics between film-type PRLED and microrod-type PRLED under high current driving..........................................................................................88
Reference in chapter 5 ……………………………………………………..95

Chapter 6 Vertical InGaN-Based Green-Band Solar Cells..............................96
6.1 Optimization of the barrier structure on the characteristics of vertical InGaN-based green-band photovoltaic cells............................................96
6.2 Characteristics of vertical InGaN-based green-band photovoltaic cells under high solar concentration of up to 300 Suns......................................................98
Reference in chapter 6 ………………………………………………..…..107

Chapter 7 Conclusion and Future Work..........................................................109
7.1 Conclusion.............................................................................................109
7.2 Future work............................................................................................110
參考文獻 References in Chapter 1

[1] S. Nakamura, “Prospects for LED lighting,”Nature Photonic, Vol 3, 180-182 (2009).
[2] E. F. Schubert, “Light-Emitting Diodes,” Second Edition, Cambridge University Press. (2006).
[3] M. R. Krames, O. B. Shchekin, R. M. Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,”Journal of Display Technology, Vol 3(2), 160-175 (2007).
[4] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,”Journal of Applied Physics, Vol 89(11), 5815-5875 (2001).
[5] J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager Iii, E. E. Haller, and S. Kurtz, “Superior radiation resistance of In1− xGaxN alloys: Full-solar-spectrum photovoltaic material system,”Journal of Applied Physics, Vol 94(10), 6477-6482 (2003).
[6] P. G. Moses, and C. G. Van de Walle, “Band bowing and band alignment in InGaN alloys,”Applied Physics Letters, Vol 96(2), 021908 (2010).
[7] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E.Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1-xGaxN alloys,”Applied Physics Letters, Vol 80(25), 4741-4743 (2002).
[8] A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,”Nature photonics, Vol 2(2), 77-84 (2008).
[9] S. Nakamura,“Background story of the invention of efficient blue InGaN light emitting diodes ,”(2015).
[10] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures,”Journal of Applied Physics, Vol 87(1), 334-344 (2000).
[11] T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells,”Japanese Journal of Applied Physics, 36(4A), 382-385 (1997).
[12] O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, and L. F. Eastman, “Pyroelectric properties of Al (In) GaN/GaN hetero-and quantum well structures,” Journal of Physics, Vol 14(13), 3399-3434 (2002).
[13] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,”Nature, Vol 406(6798), 865-868 (2000).
[14] J. H. Ryou, P. D. Yoder, J. Liu, Z. Lochner, H. Kim, S. Choi, and R. D. Dupuis, “Control of quantum-confined stark effect in InGaN-based quantum wells,”IEEE Journal of Selected Topics in Quantum Electronics, Vol 15(4), 1080-1091 (2009).
[15] F. Daniel, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Feezell, Semipolar(2021) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting,”Journal of Display Technology, Vol 9(4), 190-198 (2013).
[16] S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, , A. Chakraborty, T. Koyama, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al, In, Ga) N alloy semiconductors,”Nature Materials, Vol 5(10), 810-816 (2006).
[17] E. Kuokstis, J. W. Yang, G. Simin, M. A. Khan, R. Gaska, and M. S. Shur, “Two mechanisms of blueshift of edge emission in InGaN-based epilayers and multiple quantum wells, ”Applied Physics Letters, Vol 80(6), 977-979 (2002).
[18] R. Sharma, P. M. Pattison, H. Masui, R. M. Farrell, T. J. Baker, B. A. Haskell, and S. Nakamura, “Demonstration of a semipolar (1013) InGaN/GaN green light emitting diode,”Applied Physics Letters, Vol 87(23), 231110 (2005).
[19] K. Iso, H. Yamada, H. Hirasawa, N. Fellows, M. Saito, K. Fujito, and S. Nakamura, “High brightness blue InGaN/GaN light emitting diode on nonpolar m-plane bulk GaN substrate,”Japanese Journal of Applied Physics, Vol 46(10L), 960-962 (2007).
[20] S. Chichibu, D. A. Cohen, M. P. Mack, A. C. Abare, P. Kozodoy, M. Minsky, and S. P. DenBaars, “Effects of Si-doping in the barriers of InGaN multiquantum well purplish-blue laser diodes,”Applied Physics Letters, Vol 73(4), 496-498 (1998).
[21] M.H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Applied Physics Letters, Vol 91(18), 183507 (2007).
[22] R. A. Arif, Y. K. Ee, and N. Tansu, “Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes,”Applied Physics Letters, Vol 91(9), 091110 (2007).
[23] C. C. Pan, S. Tanaka, F. Wu, Y. Zhao, J. S. Speck, S. Nakamura, and D. Feezell, “High-power, low-efficiency-droop semipolar (2021) single-quantum-well blue light-emitting diodes,”Applied Physics Express, Vol 5(6), 062103 (2012).
[24] J. Cho, E. F. Schubert, and J. K. Kim, “Efficiency droop in light‐emitting diodes: Challenges and countermeasures,”Laser Photonics Reviews, Vol 7(3), 408-421 (2013).
[25] G. Verzellesi, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, and E. Zanoni, “Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies,”Journal of Applied Physics, Vol 114(7), 071101 (2013).
[26] J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop,”Physical Review Letters, Vol 110(17), 177406 (2013).
[27] J. Piprek, “Efficiency droop in nitride‐based light‐emitting diodes,”Physica Status Solidi (a), Vol 207(10), 2217-2225 (2010).
[28] S. Nakamura, and M. R. Krames, “History of gallium–nitride-based light-emitting diodes for illumination,” Proceedings of the IEEE, Vol 101(10), 2211-2220 (2013).
[29] A. Laubsch, M. Sabathil, J. Baur, M. Peter, and B. Hahn, “High-power and high-efficiency InGaN-based light emitters,” Electron Devices, IEEE Transactions on Electron Deviecs, Vol 57(1), 79-87 (2010).
[30] H. W. Jang, and J. L. Lee, “Mechanism for ohmic contact formation of Ni/Ag contacts on p-type GaN,”Applied Physics Letters, Vol 85(24), 5920-5922 (2004).
[31] S. H. Huang, R. H. Horng, S. L. Li, K. W. Yen, D. S. Wuu, C. K. Lin, and H. Liu, “Thermally stable mirror structures for vertical-conducting GaN/mirror/Si light-emitting diodes,”IEEE Photonics Technology Letters, Vol 19(23), 1913-1915 (2007).
[32] J. O. Song, J. S. Ha, and T. Y. Seong, “Ohmic-contact technology for GaN-based light-emitting diodes: role of P-type contact,”IEEE Transactions on Electron Devices, 57(1), 42-59 (2010).
[33] H. Okamoto, “Au-Sn (Gold-Tin),”Journal of Phase Equilibria and Diffusion, Vol 28(5), 490-490 (2007).
[34] H. Okamoto, “Au-In (Gold-Indium),”Journal of Phase Equilibria and Diffusion, Vol 25(2), 197-198 (2004).
[35] M. K. Kelly, O.Ambacher, R. Dimitrov, R. Handschuh, and M. Stutzmann, “Optical Process for Liftoff of Group III‐Nitride Films,”Physica Status Solidi (a), Vol 159(1), R3-R4 (1997).
[36] W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, and N. M. Johnson, “InxGa1-xN light emitting diodes on Si substrates fabricated by Pd–In metal bonding and laser lift-off,”Applied Physics Letters, Vol 77(18), 2822-2824 (2000).
[37] W. S. Wong, T. Sands, and N. W. Cheung, “Damage-free separation of GaN thin films from sapphire substrates,” Applied Physics Letters, Vol 72(5), 599-601 (1998).
[38] W. S. Wong, M. Kneissl, P. Mei, D. W. Treat, M. Teepe, and N. M. Johnson, “Continuous-wave InGaN multiple-quantum-well laser diodes on copper substrates,”Applied Physics Letters, Vol 78(9), 1198-1200 (2001).
[39] S. P. Philipps, A. W. Bett, K. Horowitz, and S. Kurtz, “Current status of concentrator photovoltaic (CPV) technology,” Fraunhofer Institute for Solar Energy Systems ISE at www.ise.fraunhofer.de/en/renewable-energy-data (2015)
[40] C. J. Chen, “Physics of solar energy,”John Wiley & Sons, (2011).
[41] “World record solar cell with 44.7% efficiency,” Fraunhofer-Institut für Solare Energiesysteme ISE, (2013).
[42] R. R. King, A. Boca, W. Hong, X. Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” 24th European Photovoltaic Solar Energy Conference and Exhibition, 21-29 (2009).
[43] J. M. Roman, “State-of-the-art of III-V solar cell fabrication technologies, device designs and applications,” Advanced Photovoltaic Cell Design, EN548, (2004).
[44] A. D. Vos, “Thermodynamics of Solar Energy Conversion,” Wiley, ( 2008).
[45] H. Hamzaoui, A. S. Bouazzi, B. Rezig, “Theoretical possibilities of InxGa1-xN tandem PV structures,” Solar Energy Materials & Solar Cells, Vol(87), 595–603 (2005).
[46] C. C. Yang, C. H. Jang, J. K. Sheu, M. L. Lee, S. J. Tu, F. W. Huang, Y. H. Yeh, and W. C. Lai1, “Characteristics of InGaN-based concentrator solar cells operating under 150X solar concentration,” Optics express, Vol 19(S4), A695-A700 (2011).
[47] J. K. Sheu, F. B. Chen, S. H. Wu, M. L. Lee, P. C. Chen, and Y. H. Yeh, “Vertical InGaN-based green-band solar cells operating under high solar concentration up to 300 suns,” Optics express, Vol 22(S5), A1222-A1228 (2014).
[48] R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Applied Physics Letters, Vol 94, 063505 (2009).
[49] R. Dahal, J. Li, K. Aryal, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well concentrator solar cells,” Applied Physics Letters, Vol 97, 073115 (2010).
[50] C. C. Yang, J. K. Sheu, Xin-Wei Liang, Min-Shun Huang, M. L. Lee, K. H. Chang, S. J. Tu, Feng-Wen Huang, and W. C. Lai, “Enhancement of the conversion efficiency of GaN-based photovoltaic devices with AlGaN/InGaN absorption layers,” Applied Physics Letters, Vol 97, 021113 (2010).
[51] C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Applied Physics Letters, Vol 93, 143502 (2008).
[52] D. Holec, P. M. F. J. Costa, M. J. Kappers, C. J. Humphreys, “Critical thickness calculations for InGaN/GaN,” Journal of Crystal Growth, Vol 303, 314–317 (2007).
[53] J. K. Sheu, C. C. Yang, S. J. Tu, K. H. Chang, M. L. Lee, W. C. Lai, and L. C. Peng, “GaN-Based Solar Cells With GaN/InGaN Superlattice Absorption Layers”, IEEE Electron Device Letters, Vol 30(3), (2009).
[54] X. Guo, J. Grafi, and E. F. Schubert, “Photon recycling semiconductor light emitting diode”,In Electron Devices Meeting Technical Digest, 600-603 (1999).
[55] D. Schiavon, M. Binder, A. Loeffler, and M. Peter, “Optically pumped GaInN/GaN multiple quantum wells for the realization of efficient green light-emitting devices,“Applied Physics Letters, Vol 102, 113509 (2013).
[56] C. Schwach, C. C. A. We1sbuch, S. P. DenBaars, H. Benlsty, S. Nakamura “White, single or mutli-color light emitting diodes by recycling guided modes,”U.S. Patent No. 7,223,998. (2007).
[57] B. Damilano, P. Demolon, J. Brault, T. Huault, F. Natali, and J. Massies, “Blue-green and white color tuning of monolithic light emitting diodes,”Applied Physics Letters, Vol 108, 073115 (2010).
[58] B. Damilano, H. K. Chauveau1y, E. Frayssinet, J. Brault, S. Hussain, K. Lekhal, P. Vennéguès, P. D. Mierry, and J. Massies, “Metal organic vapor phase epitaxy of monolithic two-color light-emitting diodes using an InGaN-based light converter,”Applied Physics Express, Vol 6(9), 092105 (2013).
[59] B. Damilano, K. Lekhal, H. K. Chauveau, S. Hussain, E. Frayssinet, J. Brault, S. Chenot, P. Vennéguès, P. D. Mierry, and J. Massies, “Monolithic white light emitting diodes using a (Ga, In) N-based light converter,”Proceeding of The International Society for Optical Engineering, Vol 8986, 89861G1-89861G9 (2014).
[60] E. F. Schubert, and J. K. Kim, “Solid-state light sources getting smart,”Science, Vol 308(5726), 1274-1278 (2005).
[61] H. Wu, X. Zhang, C. Guo, J. Xu, M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with green/red phosphors,”IEEE Photonics Technology Letters, Vol 17(6), 1160-1162 (2005).
[62] J. K. Sheu, F. B. Chen, W. Y. Yen, Y. C. Wang, C. N. Liu, Y. H. Yeh, and M. L. Lee, “GaN-based photon-recycling green light-emitting diodes with vertical-conduction structure,”Optics express, Vol 23(7), A371-A381 (2015).
[63] J. H. Oh, J. R. Oh, H. K. Park, Y. G. Sung, and Y. R. Do, “New paradigm of multi-chip white LEDs: combination of an InGaN blue LED and full down-converted phosphor-converted LEDs,”Optics express, Vol 19(103), A270-A279 (2011).
[64] K. J. Chen, H. T. Kuo, H. C. Chen, M. H. Shih, C. H. Wang, S. H. Chien, S. H. Chiu,C. C. Lin, C. J. Pan, and H. C. Kuo, “High thermal stability of correlated color temperature using current compensation in hybrid warm white high-voltage LEDs,”Optics express, Vol 21(102), A201-A207 (2013).
[65] C. C. Lin, and R. S. Liu, “Advances in phosphors for light-emitting diodes,”The Journal of Physical Chemistry Letters, Vol 2(11), 1268-1277 (2011).
[66] J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D.Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, F. Robert, and Jr. Karlicek, “Toward Smart and Ultra-effi cient Solid-State Lighting,” Advenced. Optical Materials, Vol 2, 809–836 (2014).
[67] Y. Chen, M. Gong, G. Wang, and Q. Su, “High efficient and low color-temperature white light-emitting diodes with Tb3Al5O12: Ce3+ phosphor,“Applied Physics Letters, Vol 91(7), 071117 (2007).
[68] J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. M. Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao “Research challenges to ultra‐efficient inorganic solid‐state lighting,” Laser & Photonics Reviews, Vol 1(4), 307-333 (2007).
[69] J. K. Sheu, F. B. Chen, Y. C. Wang, C. C. Chang, S. H. Huang, C. N. Liu, and M. L. Lee, “Warm-white light-emitting diode with high color rendering index fabricated by combining trichromatic InGaN emitter with single red phosphor,” Optics express, Vol 23(7), A232-A239 (2015).
[70] M. A. Khan, M. Shatalov, H. P. Maruska, H. M. Wang and E. Kuokstis, “III–nitride UV devices,”Japanese Journal of Applied Physics, Vol 44(10R), 7191 (2005).
[71] H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, “Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes,” Japanese Journal of Applied Physics, Vol 53, 100209 (2014).
[72] M. S. Shur, and R. Gaska, “Deep-ultraviolet light-emitting diodes,”IEEE Transactions on Electron Devices, Vol 57(1), 12-25 (2010).
[73] M. Kneissl, T Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson, and M. Weyers, “Advances in group III-nitride-based deep UV light-emitting diode technology,”Semiconductor Science and Technology, Vol 26(1), 014036 (2011).
[74] World Health Organization, “Ultraviolet Radiation as a Hazard in the Workplace,”Online: www. who. int/peh-uv/Info_sheet/UV_Occupational_Risk. pdf. (2003)
[75] M. G. Kimlin, T. D. Tenkate, “Occupational exposure to ultraviolet radiation: the duality dilemma,”Reviews on Environmental Health, Vol 22(1), 1-38 (2007).

References in Chapter 2

[1] W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, and N. M. Johnson, “InxGa1-xN light emitting diodes on Si substrates fabricated by Pd–In metal bonding and laser lift-off,”Applied Physics Letters, Vol 77(18), 2822-2824 (2000).
[2] E. F. Schubert, “Light-Emitting Diodes,” Second Edition, Cambridge University Press. (2006).
[3] D. Schiavon, M. Binder, A. Loeffler, and M. Peter, “Optically pumped GaInN/GaN multiple quantum wells for the realization of efficient green light-emitting devices,”Applied Physics Letters, Vol 102(11), 113509 (2013).

References in Chapter 3

[1] B. Galler, P. Drechsel, R. Monnard, P. Rode, P. Stauss, S. Froehlich, and J. Wagner, “Influence of indium content and temperature on Auger-like recombination in InGaN quantum wells grown on (111) silicon substrates,” Applied Physics Letters, Vol 101(13), 131111 (2012).
[2] U. zgur, H. Liu, X. Li, X. Ni, and H. Morkoc, “GaN-based light-emitting diodes: Efficiency at high injection levels,” Proceedings of the IEEE, Vol 98(7), 1180-1196 (2010).
[3] D. Schiavon, M. Binder, M. Peter, B. Galler, P. Drechsel, and F. Scholz, “Wavelength‐dependent determination of the recombination rate coefficients in single‐quantum‐well GaInN/GaN light emitting diodes,” Physica Status Solidi (b), Vol 250(2), 283-290 (2013).
[4] J. K. Sheu, G. C. Chi, Y. K. Su, C. C. Liu, C. M. Chang, W. C. Hung, and M. J. Jou, “Luminescence of an InGaN/GaN multiple quantum well light-emitting diode,” Solid-state electronics, Vol 44(6), 1055-1058 (2000).
[5] T. Mukai, M. Yamada, and S. Nakamura, “Current and temperature dependences of electroluminescence of InGaN-based UV/blue/green light-emitting diodes,” Japanese Journal of Applied Physics, Vol 37(11B), L1358-L1361 (1998).
[6] Y. L. Li, T. Gessmann, E. F. Schubert, and J. K. Sheu, “Carrier dynamics in nitride-based light-emitting pn junction diodes with two active regions emitting at different wavelengths,” Journal of Applied Physics, Vol 94(4), 2167-2172 (2003).
[7] S. C. Shei, J. K. Sheu, C. M. Tsai, W. C. Lai, M. L. Lee, and C. H. Kuo, “Emission mechanism of mixed-color InGaN/GaN multi-quantum-well light-emitting diodes,” Japanese Journal of Applied Physics, Vol 45(4R), 2463 (2006).
[8] E. Kuokstis, J. W. Yang, G. Simin, M. A. Khan, R. Gaska, and M. S. Shur, “Two mechanisms of blueshift of edge emission in InGaN-based epilayers and multiple quantum wells,” Applied Physics Letters, Vol 80(6), 977-979 (2002).
[9] J. H. Na, R. A. Taylor, K. H. Lee, T. Wang, A. Tahraoui, P. Parbrook, and J. S. Lee, “Dependence of carrier localization in InGaN∕ GaN multiple-quantum wells on well thickness,” Applied Physics Letters, Vol 89(25), 253120 (2006).

[10] F. K. Yam, and Z. Hassan, “InGaN: An overview of the growth kinetics, physical properties and emission mechanisms,” Superlattices and Microstructures, Vol 43(1), 1-23 (2008).
[11] E. F. Schubert, “Light-Emitting Diodes,” Second Edition, Cambridge University Press. (2006).

References in Chapter 4

[1] J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, “White-Light Emission From Near UV InGaN–GaN LED Chip Precoated With Blue/Green/Red Phosphors,” IEEE Photonics Technology Letters, Vol 15(1), (2003).
[2] D. Schiavon, M. Binder, A. Loeffler, and M. Peter, “Optically pumped GaInN/GaN multiple quantum wells for the realization of efficient green light-emitting devices,” Applied Physics Letters, Vol 102(11), 113509 (2013).
[3] E. F. Schubert, “Light-Emitting Diodes,” Second Edition, Cambridge University Press. (2006).
[4] Y. Chen, M. Gong, G. Wang, and Q. Su, “High efficient and low color-temperature white light-emitting diodes with Tb3Al5O12:Ce3+ phosphor,”Applied Physics Letters, Vol 91(7), 071117-071117 (2007).
[5] H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, and S. S. Kim, “Enhancement of red spectral emission intensity of Y3Al5O12:Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs,” Journal of Luminescence, Vol 126(2), 371-377 (2007).
[6] S. Nizamoglu, T. Erdem, X. W. Sun, and H. V. Demir, “Warm-white light-emitting diodes integrated with colloidal quantum dots for high luminous efficacy and color rendering,” Optics letters, Vol 35(20), 3372-3374 (2010).
[7] G. Verzellesi, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, and E. Zanoni, “Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies,” Journal of Applied Physics, Vol 114, 071101 (2013).
[8] J. R. Chen, Y. C. Wu, S. C. Ling, T. S. Ko, T. C. Lu, H. C. Kuo, and S. C. Wang, “Investigation of wavelength-dependent efficiency droop in InGaN light-emitting diodes,” Applied Physics B, Vol 98(4), 779-789 (2010).



References in Chapter 5

[1] J. K. Sheu, and G. C. Chi, “The doping process and dopant characteristics of GaN,” Journal of Physics: Condensed Matter, Vol 14(22), R657 (2002).
[2] J. K. Sheu, F. B. Chen, W. Y. Yen, Y. C. Wang, C. N. Liu, Y. H. Yeh, and M. L. Lee, “GaN-based photon-recycling green light-emitting diodes with vertical-conduction structure. Optics express,”Vol 23(7), A371-A381 (2015).
[3] J. Cho, E. F. Schubert, and J. K. Kim, “Efficiency droop in light‐emitting diodes: Challenges and countermeasures,” Laser & Photonics Reviews, Vol 7(3), 408-421 (2013).
[4] G. Verzellesi, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, and E. Zanoni, “Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies,” Journal of Applied Physics, Vol 114(7), 071101 (2013).


References in Chapter 6

[1] A. Laubsch, M. Sabathil, J. Baur, M. Peter, and B. Hahn, “High-power and high-efficiency InGaN-based light emitters,” IEEE Transactions on Electron Devices, Vol 57(1), 79-87 (2010).
[2] M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” Journal of Display Technology, Vol 3(2), 160-175 (2007).
[3] M. H. Chang, D. Das, P. V. Varde, and M. Pecht, “Light emitting diodes reliability review,” Microelectronics Reliability, Vol 52(5), 762-782 (2012).
[4] J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager III, E. E. Haller, Hai Lu, William J. Schaff, W. K. Metzger, and Sarah Kurtz, “Superior radiation resistance of In 1−x Ga x N alloys: Full-solar-spectrum photovoltaic material system,”Applied Physics Letters, Vol 94, 6477 (2003).
[5] J. Bai, C. C. Yang, M. Athanasiou, and T. Wang, “Efficiency enhancement of InGaN/GaN solar cells with nanostructures,”Applied Physics Letters, Vol 104(5), 051129 (2014).
[6] C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” Journal of applied physics, Vol 51(8), 4494-4500 (1980).
[7] R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, “Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition,”Applied Physics Letters, Vol 70(9), 1089-1091 (1997).
[8] C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Applied Physics Letters, Vol 93(14), 143502-143502 (2008).
[9] M. A. Green, “Solar cells: operating principles, technology, and system applications,”(1982).
[10] C. C. Yang, C. H. Jang, J. K. Sheu, M. L. Lee, S. J. Tu, F. W. Huang, and W. C. Lai, “Characteristics of InGaN-based concentrator solar cells operating under 150X solar concentration,” Optics express, Vol 19(104), A695-A700 (2011).
[11] K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of InGaP/InGaAs/Ge triple-junction solar cell and optimization of solar cell's structure focusing on series resistance for high-efficiency concentrator photovoltaic systems,” Solar Energy Materials and Solar Cells, Vol 90(9), 1308-1321 (2006).
[12] R. R. King, D. Bhusari, D. Larrabee, X. Q. Liu, E. Rehder, K. Edmondson, and N. H. Karam, “Solar cell generations over 40% efficiency,” Progress in Photovoltaics: Research and Applications, Vol 20(6), 801-815 (2012).
[13] H. Hamzaoui, A. S. Bouazzi, and B. Rezig, “Theoretical possibilities of InxGa1− xN tandem PV structures,” Solar energy materials and solar cells, Vol 87(1), 595-603 (2005).
[14] R. R. King, A. Boca, W. Hong, X. Q. Liu, D. Bhusari, D. Larrabee, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” In 24th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, Vol 21 (2009).
[15] R. Dahal, J. Li, K. Aryal, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well concentrator solar cells,” Applied Physics Letters, Vol 97(7), 073115-073115 (2010).
[16] K. Araki, M. Yamaguchi, T. Takamoto, E. Ikeda, T. Agui, H. Kurita, and T. Unno, “Characteristics of GaAs-based concentrator cells,” Solar energy materials and solar cells, Vol 66(1), 559-565 (2001).
[17] G. S. Kinsey, P. Hebert, K. E. Barbour, D. D. Krut, H. L. Cotal, and R. A. Sherif, “Concentrator multijunction solar cell characteristics under variable intensity and temperature,” Progress in Photovoltaics: Research and Applications, Vol 16(6), 503-508 (2008).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-05起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-08-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw