進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-3107201513115000
論文名稱(中文) 以眼動儀實驗及問卷方法探討網站使用者之行為意圖:以網站複雜度、網路自我效能、與任務科技配適理論為基礎
論文名稱(英文) Investigating the behavioral intentions of website users via eye-tracker experiments and surveys: Based on the perspectives of website complexity, internet self-efficacy, and task-technology fit
校院名稱 成功大學
系所名稱(中) 資訊管理研究所
系所名稱(英) Institute of Information Management
學年度 103
學期 2
出版年 104
研究生(中文) 王怡文
研究生(英文) Yi-Wen Wang
學號 R76021029
學位類別 碩士
語文別 中文
論文頁數 127頁
口試委員 指導教授-王維聰
口試委員-林彣珊
口試委員-陳信宏
中文關鍵字 知覺網站複雜度  眼動追蹤  任務科技配適度 
英文關鍵字 Perceived website complexity  Eye-tracking  Task-Technology Fit 
學科別分類
中文摘要 電子商務市場競爭激烈,如何從眾多網站中脫穎而出顯得格外重要,而容易使用的網站介面,讓網站使用者能夠輕鬆完成操作。為了探討網站設計對於使用者的影響,本研究將探討三種不同複雜度之網站:成分、協調及動態複雜度,如何影響網站使用者的瀏覽體驗。而使用者在瀏覽網站時可以分為目標導向(有任務)及體驗型(無任務)兩種情況,過去研究也發現個人特質會影響使用者對於網站的採用,本研究將網路自我效能視為個人特徵進行探討。
任務科技配適模型(TTF)常被用來衡量使用者所使用之資訊科技是否與其任務配適,主要分為三個構面:任務特徵、個人特徵及科技特徵,三個構面間彼此的配適越好,則任務科技配適越好,而好的任務科技配適將會正向影響使用者行為意圖。
本研究結合知覺網站複雜度與任務科技配適模型發展出研究模型,並利用該模型去探討網站使用者的行為意圖。再利用眼動追蹤技術(Eye Tracking)來觀察記錄使用者觀看網頁時的眼動資料,進一步整理成眼動指標,再搭配問卷去驗證研究模型。
本研究收集39位受試者之眼動資料及234份問卷,研究結果發現,協調、動態複雜度對任務科技配適度有負向關係,而任務科技配適對使用者使用意圖呈現正向關係。此外,根據實驗找出與複雜度相關的九個眼動指標,以指標代替複雜度問項的情況下,協調複雜度與任務科技配適度呈現負向關係。
英文摘要 To get insights into how Internet users perceive the quality and user-friendliness of website design, this study intend to conduct a controlled experiment using an eye-tracking device to examine the effects of different levels of the three primary features of website complexity, namely the component, coordinative, and dynamic complexities on the behavioral intentions of website users. Additionally, in conjunction with the concept of website complexities, the task-technology fit theory (TTF) is adopted to develop a research framework to understand the behaviors of the website users. It is expected that the lower the users’ perceptions of website complexities will result in higher perception of the fit between a website and the tasks that the users intend to accomplish via the use of the website, which, in turn, may lead to higher behavioral intentions. Additionally, personal factors of Internet users, including Internet self-efficacy, and online task characteristics are expected to have significant effects on the relationships between website complexities and the perceived level of task-technology fit.
Based on 39 participants and 234 questionnaires, the result indicates that perceived coordinative complexity and perceived dynamic complexity will make negatively influences task-technology fit, which has a positive influence on the behavioral intentions of website users. Based on the results of the experiment using eye-tracking device, this study identifies nine metrics of eye-tracking that are associated with website complexities. The research shows the complexity of the internet interface will affect the way to use the website. The result of this research can provide a practical reference for website service providers.
論文目次 摘要 i
Abstract ii
誌謝 vii
目錄 viii
表目錄 xii
圖目錄 xiv
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 3
第三節 研究範圍與限制 3
第四節 研究流程 4
第二章 文獻探討 5
第一節 知覺網站複雜度 (Perceived website complexity) 5
2.1.1 知覺網站複雜度 5
2.1.2 知覺網站複雜度構成要素 6
第二節 任務模式 7
第三節 網路自我效能 8
第四節 任務科技配適模型 9
2.4.1 任務科技配適模型過去研究方向 9
2.4.2 科技績效鏈 (Technology to Performance Chain, TPC) 11
2.4.3 使用任務科技配適理論之研究 12
2.4.4 任務科技配適理論構面 13
第五節 眼動儀實驗方法 18
第三章 實驗規劃與研究方法 22
第一節 研究模型 22
第二節 研究假說 25
3.2.1 網路自我效能與任務科技配適度 25
3.2.2 知覺網站複雜度與任務科技配適度 25
3.2.3 任務模式與知覺網站複雜度與任務科技配適度 26
3.2.4 任務科技配適度與使用者行為意圖 27
第三節 眼動儀實驗設計 30
3.3.1 實驗設計 30
3.3.2 實驗對象 33
3.3.3 實驗儀器設備 33
3.3.4 自變項 34
3.3.5 實驗流程 42
3.3.6 實驗任務 45
3.3.7 眼動指標 46
3.3.8 眼動指標計算方法 48
3.3.9 眼動資料標準化 49
3.3.10 眼動儀指標與網站複雜度 50
第四節 問卷實驗方法 54
3.4.1 問卷設計 54
3.4.2 網路自我效能問項 54
3.4.3 知覺網站複雜度問項 57
3.4.4 任務科技配適度問項 59
3.4.5 使用者行為意圖問項 59
第四章 資料分析 61
第一節 前測資料分析 61
第二節 問卷資料分析 67
4.2.1 受試者基本資料 67
4.2.2 信度分析 68
第三節 衡量模型 72
4.3.1 收斂效度 72
4.3.2 區別效度 75
4.3.3 路徑分析與假說檢定 76
第四節 調節效果驗證 79
第五節 小結 82
第六節 眼動指標分析 83
4.6.1 指標探索性因素分析 83
4.6.2 信度分析 85
4.6.3 收斂效度 86
4.6.4 區別效度 87
4.6.5 眼動指標歸納結果 88
第七節 眼動指標衡量模型 89
4.7.1 路徑分析與假說檢定 89
4.7.2 調節效果驗證 91
4.7.3 假說檢定結果 93
第五章 結論與建議 94
第一節 研究發現與結論 94
第二節 研究貢獻 97
第三節 研究限制與未來研究方向 99
參考文獻 101
附錄一 前測問卷 106
附錄二 正式問卷 117
參考文獻 Bandura, A. (1986). Social Foundations of Thought and Action: A Social Cognitive Theory. Englewood Cliffs, NJ: Prentice Hall.
Barber, H., Janes, I., and Boyland, M. (2004), "The full picture: Using eye-tracking to make website design more effective," World Association of Research Professional,ESOMAR, 1-15.
Baxter, M. (1995), Product Design-Practical Methods for the Systematic Development of New Product, London: Chapman and Hall.
Benbasat, I., Dexter, A. S., & Todd, P. (1986). An experimental program investigating color-enhanced and graphical information presentation: an integration of the findings. Communicatiom of the ACM, 29(11), 1094-1105.
Berlyne, D. E. (1970). Novelty, complexity, and hedonic value. Perception & Psychophysics, 8(5), 279-286.
Boaz, A., Cuneo, J., Kreps, D., & Watson, M. (2002). Using Eye Tracking Technology For Web Site Usability Analysis: The Application Of Erica To Gefanuc. Com. In Proc. IEEE Systems and Information Design Symposium.
Bonev, B., Chuang, L. L., & Escolano, F. (2013). How do image complexity, task demands and looking biases influence human gaze behavior?. Pattern Recognition Letters, 34(7), 723-730.
Campbell, D. J. (1988). Task complexity: A review and analysis. Academy of Management Review, 13(1).
Choi, J. H., & Lee, H. J. (2012). Facets of simplicity for the smartphone interface: A structural model. International Journal of Human-Computer Studies, 70(2), 129-142.
Chu, Y., & Huang, L. (2008). Mobile technologies adoption: An exploratory case study. Tsinghua Science & Technology, 13(3), 300-305.
Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS quarterly,19(2), 189-211.
Cowen, L., Ball, L. J., & Delin, J. (2002). An eye movement analysis of web page usability. In People and Computers XVI-Memorable Yet Invisible (317-335). Springer London.
Crabbe, M., Standing, C., Standing, S., & Karjaluoto, H. (2009). An adoption model for mobile banking in Ghana. International Journal of Mobile Communications, 7(5), 515-543.
Cutrell, E., & Guan, Z. (2007, April). What are you looking for?: an eye-tracking study of information usage in web search. In Proceedings of the SIGCHI conference on Human factors in computing systems, 407-416. ACM.
Cyr, D., Head, M., Larios, H., & Pan, B. (2009). Exploring human images in website design: a multi-method approach. MIS Quarterly, 33(3), 539.
DeLone, W., & McLean, E. (1992). Information Systems Success: The Quest for the Dependent Variable. Information Systems Research, 3(1), 60-60.
Deng, L., & Poole, M. S. (2010). Affect in web interfaces: a study of the impacts of web page visual complexity and order. MIS Quarterly, 34(4), 711-730.
DeStefano, D., & LeFevre, J. A. (2007). Cognitive load in hypertext reading: A review. Computers in Human Behavior, 23(3), 1616-1641.
Dishaw, M. T., & Strong, D. M. (1999). Extending the technology acceptance model with task–technology fit constructs. Information and Management, 36(1), 9-21.
Eastin, M. S., & LaRose, R. (2000). Internet self‐efficacy and the psychology of the digital divide. Journal of Computer‐Mediated Communication, 6(1).
Ferratt, T. W., & Vlahos, G. E. (1998). An investigation of task-technology fit for managers in Greece and the US. European Journal of Information Systems, 7(2), 123-136
Folk, J. R., & Morris, R. K. (2003). Effects of syntactic category assignment on lexical ambiguity resolution in reading: An eye movement analysis. Memory & Cognition, 31(1), 87-99.
Goldberg, J. H., & Kotval, X. P. (1999). Computer interface evaluation using eye movements: methods and constructs. International Journal of Industrial Ergonomics, 24(6), 631-645.
Goodhue, D. L. (1995). Understanding user evaluations of information systems. Management Science, 41(12), 1827-1844.
Goodhue, D. L., & Thompson, R. L. (1995). Task-technology fit and individual performance. MIS Quarterly, 19(2), 213-236.
Graf, W., & Krueger, H. (1989, September). Ergonomic evaluation of user-interfaces by means of eye-movement data. In Proceedings of the third international conference on human-computer interaction, Vol. 1 on Work with computers: organizational, management, stress and health aspects (pp. 659-665). Elsevier Science Inc..
Henderson, J. M., & Hollingworth, A. (1998). Eye movements during scene viewing: An overview. Eye Guidance in Reading and Scene Perception, 11, 269-293.
Hoffman, D. L., & Novak, T. P. (1996). Marketing in hypermedia computer-mediated environments: conceptual foundations. Journal of Marketing, 60(3), 50-68.
Hoffman, J. E., & Subramaniam, B. (1995). The role of visual attention in saccadic eye movements. Perception & Psychophysics, 57(6), 787-795.
Hsu, M. H., & Chiu, C. M. (2004). Internet self-efficacy and electronic service acceptance. Decision support systems, 38(3), 369-381.
Igbaria, M., & Tan, M. (1997). The consequences of information technology acceptance on subsequent individual performance. Information & Management, 32(3), 113-121.
Jacob, R. J., & Karn, K. S. (2003). Eye tracking in human-computer interaction and usability research: Ready to deliver the promises. Mind, 2(3), 4.
Jarupathirun, S., & Zahedi, F. (2007). Exploring the influence of perceptual factors in the success of web-based spatial DSS. Decision Support Systems, 43(3), 933-951.
Jiang, Z. J., & Benbasat, I. (2007). The effects of presentation formats and task complexity on online consumers' product understanding. MIS Quarterly, 31(3), 475-475.
Josephson, S., & Holmes, M. E. (2002). Visual attention to repeated Internet images: Testing the scanpath theory on the world wide web. In: Proceedings of the Eye Tracking Research & Applications Symposium 2002, 43–49. New York: ACM.
Kim, S. H., Dong, Z., Xian, H., Upatising, B., & Yi, J. S. (2012). Does an Eye Tracker Tell the Truth about Visualizations?: Findings while Investigating Visualizations for Decision Making. Visualization and Computer Graphics, IEEE Transactions on, 18(12), 2421-2430.
Klopping, I. M., & McKinney, E. (2004). Extending the technology acceptance model and the task-technology fit model to consumer e-commerce. Information technology learning and performance journal, 22, 35-48.
Langton, S. R., Watt, R. J., & Bruce, V. (2000). Do the eyes have it? Cues to the direction of social attention. Trends in Cognitive Sciences, 4(2), 50-59.
Lee, C. C., Cheng, H. K., & Cheng, H. H. (2007). An empirical study of mobile commerce in insurance industry: Task–technology fit and individual differences. Decision Support Systems, 43(1), 95-110.
Leuthold, S., Schmutz, P., Bargas-Avila, J. A., Tuch, A. N., & Opwis, K. (2011). Vertical versus dynamic menus on the world wide web: Eye tracking study measuring the influence of menu design and task complexity on user performance and subjective preference. Computers in Human Behavior, 27(1), 459-472.
Lin, T. C., & Huang, C. C. (2008). Understanding knowledge management system usage antecedents: An integration of social cognitive theory and task technology fit. Information & Management, 45(6), 410-417.
Lin, W.-S. (2012). Perceived fit and satisfaction on web learning performance: IS continuance intention and task-technology fit perspectives. International Journal of Human-Computer Studies, 70(7), 498-507
Mathieson, K., & Keil, M. (1998). Beyond the interface: Ease of use and task/technology fit. Information & Management, 34(4), 221-230.
Michailidou, E., Harper, S., & Bechhofer, S. (2008, September). Visual complexity and aesthetic perception of web pages. In Proceedings of the 26th annual ACM international conference on Design of communication, 215-224. ACM.
Nadkarni, S., & Gupta, R. (2007). A task-based model of perceived website complexity. MIS Quarterly, 501-524.
Novak, T. P., Hoffman, D. L., & Duhachek, A. (2003). The influence of goal-directed and experiential activities on online flow experiences. Journal of consumer psychology, 13(1), 3-16.
Pieters, R., Warlop, L., & Wedel, M. (2002). Breaking through the clutter: Benefits of advertisement originality and familiarity for brand attention and memory. Management Science, 48(6), 765-781.
Poynter, W., Barber, M., Inman, J., & Wiggins, C. (2013). Individuals exhibit idiosyncratic eye-movement behavior profiles across tasks. Vision research, 89, 32-38.
Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3), 372.
Sanders, M.S. and McCormick, E.J. (1993), Human Factors in Engineering and Design, 7th ed., New York: McGraw-Hill.
Sarker, S., & Valacich, J. S. (2010). An alternative to methodological individualism: A non-reductionist approach to studying technology adoption by groups. MIS Quarterly, 34(4), 779-808.
Schlosser, A. E. (2003). Experiencing products in the virtual world: the role of goal and imagery in influencing attitudes versus purchase intentions. Journal of Consumer Research, 30(2), 184-198.
Seckler, M., Opwis, K., & Tuch, A. N. (2015). Linking objective design factors with subjective aesthetics: An experimental study on how structure and color of websites affect the facets of users’ visual aesthetic perception. Computers in Human Behavior, 49, 375-389.
Solso, R. L. (1994). Cognition and the visual arts. Cambridge, MA: MIT Press.
Steinmann, D. O. (1976). The effects of cognitive feedback and task complexity in multiple-cue probability learning. Organizational Behavior and Human Performance, 15(2), 168-179.
Svensson, E., Angelborg-Thanderez, M., Sjöberg, L., & Olsson, S. (1997). Information complexity-mental workload and performance in combat aircraft. Ergonomics, 40(3), 362-380.
Te'eni, D., & Feldman, R. (2001). Performance And Satisfaction In Adaptive Websites: An Experiment On Searches Within A Task-Adapted Website. J. AIS, 2, 0.
Tuch, A. N., Bargas-Avila, J. A., & Opwis, K. (2010). Symmetry and aesthetics in website design: It’s a man’s business. Computers in Human Behavior, 26(6), 1831-1837.
Vessey, I. (1991). Cognitive fit: An empirical study of information acquisition. Information Systems Research, 2(1), 63.
Williams, L. M., Loughland, C. M., Green, M. J., Harris, A. W., & Gordon, E. (2003). Emotion perception in schizophrenia: an eye movement study comparing the effectiveness of risperidone vs. haloperidol. Psychiatry Research, 120(1), 13-27.
Wolfinbarger, M., & Gilly, M. C. (2001). Shopping online for freedom, control, and fun. California Management Review, 43(2), 34-55.
Wood, R. E. (1986). Task complexity: Definition of the construct. Organizational Behavior and Human Decision Processes, 37(1), 60-82.
Zhou, T., Lu, Y., & Wang, B. (2010). Integrating TTF and UTAUT to explain mobile banking user adoption. Computers in Human Behavior, 26(4), 760-767.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-08-03起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw