進階搜尋


下載電子全文  
系統識別號 U0026-3107201417014400
論文名稱(中文) 976nm全光纖連續波摻鐿三階雷射之研究
論文名稱(英文) Study on the All-Fiberized Continuous-Wave Ytterbium-Doped 3-Level Laser System Operating at 976nm
校院名稱 成功大學
系所名稱(中) 微電子工程研究所
系所名稱(英) Institute of Microelectronics
學年度 102
學期 2
出版年 103
研究生(中文) 蔣耀賢
研究生(英文) Yao-Hsien Chiang
學號 Q16011089
學位類別 碩士
語文別 中文
論文頁數 78頁
口試委員 指導教授-蔡宗祐
口試委員-魏明達
口試委員-李志成
口試委員-方彥程
口試委員-林士廷
中文關鍵字 三階雷射  摻鐿  直徑漸變  熱熔拉  氫氟酸蝕刻 
英文關鍵字 3-level laser system  ytterbium-doped  tapered fibers  fusing and pulling  HF-etching 
學科別分類
中文摘要 由於增益材質的影響,三階雷射並不適合產生高功率雷射。但利用直徑漸變的技術可改變增益材質的物理特性並製作出高效率的全光纖雷射。本論文描述在光纖上製作一段披覆層直徑漸變區域,且在此區域的纖核直徑保持不變的特殊方法,如此將可增加纖核與披覆層的截面積比值,光纖內的幫浦功率密度隨之提升,同時也提高幫浦吸收效率。我們首先使用熱熔拉方法順利降低915nm雷射二極體幫浦門檻並成功產生976nm雷射訊號,再以氫氟酸蝕刻光纖改良幫浦吸收率,但其光穿透率不佳導致無法雷射的問題仍有待改善。976nm摻鐿全光纖連續波三階雷射的技術運用與製作驗證將會是本論文的主要核心。
英文摘要 3-level laser system is inappropriate for high-power lasing because of the effects of gain medium material. However, by utilizing the concept of tapered fibers changes the physical properties of gain fiber and helps it become capable of establishing a highly efficient 3-level laser system. If tapered regions are well-fabricated on the cladding area while the radius of core maintains the same, then the cross-section-area ratio of core to cladding will increase, and so do the pump intensity and the pump efficiency of the 3-level laser system. First we used the fusing and pulling method to create tapered gain fibers and successfully produced the 976nm laser signal with the 915nm LD pump threshold reducing. Then we tried to etch the gain fiber in hydrofluoric (HF) acid solution to solve the low-efficiency issue. But we aren’t satisfied with the result that the power transmission was too low even the pump power absorption efficiency did increase. The demonstration of the all-fiberized continuous-wave ytterbium-doped 3-level laser system operating at 976nm with experimental verification is the core of this thesis.
論文目次 摘要 ii
誌謝 ix
目錄 x
表目錄 xii
圖目錄 xiii
符號 xvi
第1章 緒論 1
1.1 前言 1
1.2 研究目的與動機 9
第2章 976nm雷射系統理論基礎 11
2.1 光纖結構分類 11
2.2 摻雜稀土元素光纖 13
2.3 雷射工作模式 15
2.4 增益光纖能階 16
2.5 幫浦功率密度 18
2.6 幫浦飽和功率密度 21
第3章 雷射架構設計之模擬與實驗 23
3.1 915nm core-pumped Yb3+ fiber 23
3.1.1 公式推導與數值模擬 23
3.1.2 模擬結果與分析 30
3.2 915nm cladding-pumped Yb3+ fiber 33
3.2.1 公式推導與數值模擬 33
3.2.2 模擬結果與分析 37
3.3 熱熔拉法製作直徑漸變形光纖 40
3.3.1 數值模擬 40
3.3.2 實作結果與分析 44
第4章 氫氟酸蝕刻法製作直徑漸變形光纖 54
4.1 蝕刻實驗介紹 54
4.2 蝕刻實驗流程與結果分析 56
4.2.1 蝕刻單披覆層光纖 57
4.2.2 蝕刻雙披覆層光纖 62
4.3 改善光穿透率 64
第5章 結論 70
5.1 研究成果 70
5.2 未來展望 74
參考文獻 75
參考文獻 [1] Michel J.F. Digonnet, “Rare-Earth-Doped Fiber Lasers and Amplifiers, Revised and Expanded,” Stanford, California: Marcel Dekker Inc. (1993).
[2] Hideyoshi Horie, Nobuhiro Arai, Yoshitaka Mitsuishi, Naoyuki Komuro, Hideaki Kaneda, Hideki Gotoh, Masashi Usami, and Yuichi Matsushima, “Greater than 500-mW CW Kink-Free Single Transverse-Mode Operation of Weakly Index Guided Buried-Stripe Type 980-nm Laser Diodes,” IEEE PHOTONICS TECHNOLOGY LETTERS, Vol. 12, NO.10 (2000).
[3] N. Lichtenstein, A. Fily, C. Hermens, B. Schmidt, C. Harder, G. Knight, B. Reid, T. Oldroyd, D. Riley, N. Zayer, “1 Watt 14xy InGaAsP/InP Ridge Waveguide Pump Laser Diodes with Low Vertical Farfield and High Efficiency,” Optical Fiber Communication Conference 2003, DOI10.1109.
[4] E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B.C. McCollum, “Double-Clad, Offset-Core Nd Fiber Laser,” Optical Fiber Sensors, post-deadline paper, January 27, (1988).
[5] Cesar Jauregui, Jens Limpert and Andreas Tünnermann, ” High-Power Fibre Lasers,” Nature Photonics, Vol.7, pp. 861–867 (2013).
[6] Christian Wirth, Oliver Schmidt, Andrea Kliner, Thomas Schreiber, Ramona Eberhardt, and Andreas Tünnermann, “High-Power Tandem Pumped Fiber Amplifier with an Output Power of 2.9 kW,” Optics Letters, Vol. 36, Issue 16, pp. 3061-3063 (2011)
[7] J. O. White, “Parameters for Quantitative Comparison of Two-, Three-, and Four-Level Laser Media, Operating Wavelengths, and Temperatures”, IEEE Journal of Quantum Electron, Vol. 45, No. 10 (2009)
[8] K. H. Ylä-Jarkko, R. Selvas, D. B. S. Son, J. K. Sahu, C. A. Codemard, J. Nilsson, S. A. Alam, and A. B. Grudinin, “A 3.5 W 977 nm Cladding-pumped Jacketed Air-Clad Ytterbium-Doped Fiber Laser,” Advanced Solid-State Photonics, paper 103, Vol. 83 (2003).
[9] J. Boullet, Y. Zaouter, R. Desmarchelier, M. Cazaux, F. Salin, J. Saby, R. Bello-Doua, and E. Cormier, “High Power Ytterbium-Doped Rod-Type Three Level Photonic Crystal Fiber Laser,” Opt. Express 16, 17891 (2008).
[10] F. Roeser, C. Jauregui, J. Limpert, and A. Tünnermann, “94W 980nm High Brightness Yb-Doped Fiber Laser,” Opt. Express 16, 17310 (2008).
[11] J. Boullet, R. Dubrasquet, C. Medina, R. Bello-Doua, N. Traynor, and E. Cormier, "Millijoule-Class Yb-Doped Pulsed Fiber Laser Operating at 977nm," Opt. Lett. 35, 1650-1652 (2010).
[12] R. Wang, Y. Liu, J. Cao, S. Guo, L. Si, and J. Chen, "Experimental Study on the All-Fiberized Continuous-Wave Ytterbium-Doped Laser Operating near 980nm," Appl. Opt. 52, 5920-5924 (2013).
[13] Tzong-Yow Tsai, Yen-Cheng Fang, Huai-Min Huang, Hong-Xi Tsao, and Shih-Ting Lin, “Saturable Absorber Q- and Gain-Switched All-Yb3+ All-Fiber Laser at 976 and 1064 nm,” Optics Express, Vol. 18, Issue 23, pp. 23523-23528 (2010).
[14] Daniel J. Cordier and James B. Hedrick, “Rare Earths,” Minerals Yearbook, USGS (2008)
[15] R. Paschotta, J. Nilsson, Anne C. Tropper, and David C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE Journal of Quantum Electronics, Vol.33, No.7 (1997).
[16] Po-Cheng Chung, “Simulation and Analysis of 976nm CW and Pulsing Ytterbium-Doped Fiber Amplifiers,” Institute of Microelectronics National Cheng Kung University, Tainan, Taiwan, R. O. C. Thesis for Master of Science, July, 2013.
[17] J. K. Jones, J. P. De Sandro, M. Hempstead, D. P. Shepherd, A.C. Tropper and J. S. Wilkinson. ”Spectra and Energy Levels of the Trivalent Ytterbium Ion Doped into Lithium Niobate by Thermal Indiffusion,” Optoelectronics Research Centre, University of Southampton, Southampton, U.K. S09 5NH.
[18] B. N. Upadhaya, Solid state laser division, ”Studies on Yb-doped double-clad CW and pulsed fiber lasers” RRCAT NEWSLETTER, Vol. 24, Issue 1, 2011.
[19] Govind P. Agrawal,”Fiber-optic Communication Systems, ” Wiley Interscience, Chap.3, (2002).
[20] Joseph T. Verdeyen, “Laser Electronics,” Prentice Hall, Prentice hall series in solid state physical electronics, (1994).
[21] Dmitrii Kouznetsov, Jean-François Bisson, Kazunori Takaichi, and Ken-ichi Ueda, ”Single-Mode Solid-State Laser with Short, Wide Unstable Cavity,” JOSA B, Vol. 22, Issue 8, pp. 1605-1619, 2005.
[22] Limin Tong, Rafael R. Gattass, Jonathan B. Ashcom, Sailing He, Jingyi Lou, Mengyan Shen, Iva Maxwell1 & Eric Mazur, ” Subwavelength-Diameter Silica Wires for Low-Loss Optical Wave Guiding,” Nature, Vol. 426, pp. 816-819 (2003).
[23] Eric J. Zhang, Wesley D. Sacher, and Joyce K. S. Poon, “Hydrofluoric Acid Flow Etching of Low-Loss Subwavelength-Diameter Biconical Fiber Tapers,” Optics Express, Vol. 18, Issue 21, pp. 22593-22598 (2010).
[24] Yinquan Yuan, Lina Wang, Liyun Ding, and Chenhui Wu, “Theory, Experiment, and Application of Optical Fiber Etching,” Applied Optics, Vol. 51, Issue 24, pp. 5845-5849 (2012)
[25] P. M. Shankar and R. M. Mutharasan,“Tapered Fibers for Cell Studies,” Reviews in Fluorescence, Vol, 2005, pp. 63-75 (2005).
[26] Abdul Rauf, Jianlin Zhao, Biqiang Jiang, Yajun Jiang, and Wei Jiang,” Bend Measurement Using an Etched Fiber Incorporating a Fiber Bragg Grating,” Optics Letters, Vol. 38, Issue 2, pp. 214-216 (2013).
[27] Raoul Stöckle, Christian Fokas, Volker Deckert, Renato Zenobi, Beate Sick, Bert Hecht and Urs P. Wild, “High-Quality Near-Field Optical Probes by Tube Etching,” Applied Physics Letters, Vol. 75, Issue 2, pp.160 (1999).
[28] Jared C. Mikkelsen and Joyce K. S. Poon, ” Microdroplet-Etched Highly Birefringent Low-Loss Fiber Tapers,” Optics Letters, Vol. 37, Issue 13, pp. 2601-2603 (2012).
[29] B. S. Wang, and E. W. Mies, “Advanced Topics on Fusion Splicing of Specialty Fibers and Devices,” Proc. of SPIE APOC’07, Vol.6781, pp. 678130-1-678130-13, Wuhan, China, November (2007).
[30] H. J. Kbashi, “Fabrication of Submicron-Diameter and Taper Fibers Using Chemical Etching,” J. Mater. Sci. Technol., Vol.28, No.7, pp. 308-312 (2012).
[31] Jörg Bierlich, Jens Kobelke, David Brand, Konstantin Kirsch, Jan Dellith, Hartmut Bartelt, “Nanoscopic Tip Sensors Fabricated by Gas Phase Etching of Optical Glass Fibers,” Photonic Sensors, Vol.2, No.4, pp. 331–339 (2012)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-13起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw