進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-3107201400350400
論文名稱(中文) AFM矽探針作為鋰離子電池陽極之微區電化學阻抗量測與分析
論文名稱(英文) Micro-region Electrochemical Impedance Measurement and Analysis of Lithium Ion Battery with AFM Silicon probe as Anode
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 江昇訓
研究生(英文) Sheng-Xun Jiang
學號 N56011271
學位類別 碩士
語文別 中文
論文頁數 57頁
口試委員 指導教授-劉浩志
口試委員-方冠榮
口試委員-許文東
口試委員-呂正傑
中文關鍵字 鋰離子電池  原子力顯微鏡  電化學阻抗分析法    微區 
英文關鍵字 lithium ion battery  atomic force microscopy  electrochemical impedance spectroscopy  micro-region  silicon 
學科別分類
中文摘要 在鋰離子電池的研究領域中,眾多研究皆為使用電化學阻抗分析法(electrochemical impedance spectroscopy, EIS)來探討電池系統內部的反應與變化。但在傳統的EIS實驗設置中,使用塊材形式的電極對電池進行量測,分析結果往往是整個電池系統的平均值與塊材的性質,不易觀察到電極中微細的變化。有鑑於此,本研究將藉由控制電極的大小以限制電池反應發生的區域,使用AFM探針作為EIS量測中的一極,並以本身即為電極材料的矽探針電極來獲得微區電化學阻抗圖譜,在與對電極反應面積差距極大的狀況下,阻抗圖譜資訊將主要來自於矽針電極的變化。
從實驗結果中發現,微區量測下的阻抗圖譜與以往塊材形式量測的結果大不相同,尤其是在低頻的區域呈現較為少見的圖譜曲線與變化。在傳統EIS量測中,低頻區域通常呈現鋰離子在電極中的擴散現象,即Warburg effect,圖譜形式為一斜直線,進一步由相關數值可計算出鋰離子於該電極材料中的擴散係數。而微區阻抗圖譜中的斜直線則會被分成多段,從單一圖譜中即可得到不同數值的擴散係數,代表著微區阻抗圖譜可觀察出鋰離子於矽針電極內部不同結構之間擴散能力的差異。
英文摘要 In the study of lithium ion battery (LIB), major parts of the analysis are carried out with the electrochemical impedance spectroscopy (EIS) to interpret the mechanism of LIB. However, in the traditional EIS set-up, the experiment result is inevitably the average value of the whole measured system, or battery. Therefore, it is difficult to observe the tiny variation of the electrode by utilizing the bulk electrode.
In this study, micro-region EIS analysis system will be constructed by combining the atomic force microscopy (AFM) and EIS. Utilize the AFM silicon probe as the electrode to restrict the reaction area in micro-region. As a result, the Nyquist plot will reflect the variation of working electrode (WE) more straight forward with the counter electrode (CE) having great reaction area than WE.
From the experiment results, the Nyquist plot of micro-region measurement is very distinct to the one of traditional EIS, specifically in the low-frequency region. In common Nyquist plot, low-frequency region often represents the diffusion phenomena, which is usually called Warburg effect, of lithium ion and display it by a tilt line. Then, diffusion coefficient of lithium ion ( DLi+) can be obtained from the related value with this line. More and more, there are different values of DLi+ obtained from the only one Nyqusit plot of micro-region measurement. It means that the micro-region measurement having the ability to distinguish the different structure in the interior of the Si-tip electrode.
論文目次 一、 序論 1
1-1 前言 1
1-2 研究動機與目的 2
二、 理論基礎簡介 3
2-1 原子力顯微鏡 3
2-2 電化學阻抗量測 4
2-2-1 等效電路元件 5
2-3 鋰離子電池 8
三、 文獻回顧 10
3-1 陽極材料--矽材 10
3-2 原子力顯微鏡表面分析技術與應用 13
3-3 微區電化學阻抗量測 16
四、 實驗方法 19
4-1 實驗用品與藥品 19
4-2 儀器設備 19
4-3 實驗儀器架設 22
4-4 電化學阻抗量測 23
五、 結果與討論 25
5-1 鋰離子電池組裝結構設計 25
5-2 微區電化學阻抗量測與分析 29
5-2-1 微區阻抗圖譜分析與討論--低頻部分 32
5-2-2 微區阻抗圖譜中各介面層間的擴散現象 36
5-2-3 藉由微區阻抗圖譜分析電極材料相變化過程 41
5-2-4 微區阻抗圖譜分析與討論--高頻部分 47
5-2-5 歐傑電子能譜儀縱深分析 47
六、 結論 50
七、 未來展望 52
八、 參考文獻 53
參考文獻 [1] G. I. A. Note, "Basics of Electrochemical Impedance Spectroscopy," ed, 2006.
[2] M. Levi, G. Salitra, B. Markovsky, H. Teller, D. Aurbach, U. Heider, et al., "Solid‐State Electrochemical Kinetics of Li‐Ion Intercalation into Li1− x CoO2: Simultaneous Application of Electroanalytical Techniques SSCV, PITT, and EIS," Journal of The Electrochemical Society, vol. 146, pp. 1279-1289, 1999.
[3] J. Guo, A. Sun, X. Chen, C. Wang, and A. Manivannan, "Cyclability study of silicon–carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy," Electrochimica Acta, vol. 56, pp. 3981-3987, 2011.
[4] H. C. Shin, W. I. Cho, and H. Jang, "Electrochemical properties of the carbon-coated LiFePO< sub> 4 as a cathode material for lithium-ion secondary batteries," Journal of Power Sources, vol. 159, pp. 1383-1388, 2006.
[5] Y. Zhang, X. Zhang, H. Zhang, Z. Zhao, F. Li, C. Liu, et al., "Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries," Electrochimica acta, vol. 51, pp. 4994-5000, 2006.
[6] T. Osaka, T. Momma, D. Mukoyama, and H. Nara, "Proposal of novel equivalent circuit for electrochemical impedance analysis of commercially available lithium ion battery," Journal of Power Sources, vol. 205, pp. 483-486, 2012.
[7] C. Wang, A. J. Appleby, and F. E. Little, "Electrochemical impedance study of initial lithium ion intercalation into graphite powders," Electrochimica acta, vol. 46, pp. 1793-1813, 2001.
[8] P. Zuo, G. Yin, and Y. Ma, "Electrochemical stability of silicon/carbon composite anode for lithium ion batteries," Electrochimica acta, vol. 52, pp. 4878-4883, 2007.
[9] A. Patil, V. Patil, D. Wook Shin, J. W. Choi, D. S. Paik, and S. J. Yoon, "Issue and challenges facing rechargeable thin film lithium batteries," Materials research bulletin, vol. 43, pp. 1913-1942, 2008.
[10] M. Yoshio, H. Wang, K. Fukuda, Y. Hara, and Y. Adachi, "Effect of Carbon Coating on Electrochemical Performance of Treated Natural Graphite as Lithium‐Ion Battery Anode Material," Journal of The Electrochemical Society, vol. 147, pp. 1245-1250, 2000.
[11] T.-F. Yi, Y. Xie, Y.-R. Zhu, R.-S. Zhu, and H. Shen, "Structural and thermodynamic stability of Li4Ti5O12 anode material for lithium-ion battery," Journal of Power Sources, 2012.
[12] P. He, H. Li, and H. S. Zhou, "Unsymmetrical lithium-ion pathway between charge and discharge processes in two-phase stage of Li4Ti5O12," Phys. Chem. Chem. Phys., 2012.
[13] F. Ronci, P. Reale, B. Scrosati, S. Panero, V. R. Albertini, P. Perfetti, et al., "High-Resolution In-Situ Structural Measurements of the Li4/3Ti5/3O4 “Zero-Strain” Insertion Material," The Journal of Physical Chemistry B, vol. 106, pp. 3082-3086, 2002.
[14] S. Scharner, W. Weppner, and P. Schmid‐Beurmann, "Evidence of Two‐Phase Formation upon Lithium Insertion into the Li1. 33Ti1. 67 O 4 Spinel," Journal of the Electrochemical Society, vol. 146, pp. 857-861, 1999.
[15] J. Gao, C. Jiang, J. Ying, and C. Wan, "Preparation and characterization of high-density spherical Li4Ti5O12 anode material for lithium secondary batteries," Journal of Power Sources, vol. 155, pp. 364-367, 2006.
[16] H. Li, X. J. Huang, L. Q. Chen, Z. G. Wu, and Y. Liang, "A high capacity nano-Si composite anode material for lithium rechargeable batteries," Electrochemical and Solid State Letters, vol. 2, pp. 547-549, Nov 1999.
[17] R. Teki, M. K. Datta, R. Krishnan, T. C. Parker, T. M. Lu, P. N. Kumta, et al., "Nanostructured silicon anodes for lithium ion rechargeable batteries," Small, vol. 5, pp. 2236-2242, 2009.
[18] Y. Yao, M. T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, et al., "Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life," Nano Letters, vol. 11, pp. 2949-2954, 2011.
[19] S. W. Lee, M. T. McDowell, L. A. Berla, W. D. Nix, and Y. Cui, "Fracture of crystalline silicon nanopillars during electrochemical lithium insertion," Proceedings of the National Academy of Sciences, vol. 109, pp. 4080-4085, 2012.
[20] D. Aurbach and Y. Cohen, "In situ micromorphological studies of Li electrodes by atomic force microscopy in a glove box system," Electrochemical and solid-state letters, vol. 2, pp. 16-18, 1999.
[21] D. Aurbach and Y. Cohen, "Morphological studies of Li deposition processes in LiAsF6/PC solutions by in situ atomic force microscopy," Journal of The Electrochemical Society, vol. 144, pp. 3355-3360, 1997.
[22] L. Beaulieu, T. Hatchard, A. Bonakdarpour, M. Fleischauer, and J. Dahn, "Reaction of Li with alloy thin films studied by in situ AFM," Journal of The Electrochemical Society, vol. 150, pp. A1457-A1464, 2003.
[23] A. Touhami, B. Nysten, and Y. F. Dufrêne, "Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy," Langmuir, vol. 19, pp. 4539-4543, 2003.
[24] S. C. Nagpure, B. Bhushan, and S. Babu, "Surface potential measurement of aged Li-ion batteries using Kelvin probe microscopy," Journal of Power Sources, vol. 196, pp. 1508-1512, 2011.
[25] S. C. Nagpure, B. Bhushan, S. Babu, and G. Rizzoni, "Scanning spreading resistance characterization of aged Li-ion batteries using atomic force microscopy," Scripta Materialia, vol. 60, pp. 933-936, 2009.
[26] Q. P. McAllister, K. E. Strawhecker, C. R. Becker, and C. A. Lundgren, "< i> In situ atomic force microscopy nanoindentation of lithiated silicon nanopillars for lithium ion batteries," Journal of Power Sources, vol. 257, pp. 380-387, 2014.
[27] W. Lee, F. B. Prinz, X. Chen, S. Nonnenmann, D. A. Bonnell, and R. P. O’Hayre, "Nanoscale impedance and complex properties in energy-related systems," MRS bulletin, vol. 37, pp. 659-667, 2012.
[28] B. Ballesteros Katemann, A. Schulte, E. J. Calvo, M. Koudelka-Hep, and W. Schuhmann, "Localised electrochemical impedance spectroscopy with high lateral resolution by means of alternating current scanning electrochemical microscopy," Electrochemistry communications, vol. 4, pp. 134-138, 2002.
[29] R. O'Hayre, G. Feng, W. D. Nix, and F. B. Prinz, "Quantitative impedance measurement using atomic force microscopy," Journal of Applied Physics, vol. 96, pp. 3540-3549, Sep 2004.
[30] A. Arutunow, A. Zielinski, and M. T. Tobiszewski, "Localized impedance measurements of AA2024 and AA2024-T3 performed by means of AFM in contact mode," Anti-Corrosion Methods and Materials, vol. 60, pp. 67-72, 2013.
[31] K. Dokko, M. Mohamedi, Y. Fujita, T. Itoh, M. Nishizawa, M. Umeda, et al., "Kinetic characterization of single particles of LiCoO2 by AC impedance and potential step methods," Journal of The Electrochemical Society, vol. 148, pp. A422-A426, 2001.
[32] M. T. McDowell, S. W. Lee, W. D. Nix, and Y. Cui, "25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium‐Ion Batteries," Advanced Materials, vol. 25, pp. 4966-4985, 2013.
[33] A. J. Bard and L. R. Faulkner, "Electrochemical methods: fundamentals and applications, 2nd," Hoboken: Wiley and Sons, 2001.
[34] M. Shi, Z. Chen, and J. Sun, "Determination of chloride diffusivity in concrete by AC impedance spectroscopy," Cement and Concrete Research, vol. 29, pp. 1111-1115, 1999.
[35] G. Zhao, Y. Meng, N. Zhang, and K. Sun, "Electrodeposited Si film with excellent stability and high rate performance for lithium-ion battery anodes," Materials Letters, vol. 76, pp. 55-58, 2012.
[36] U. Tröltzsch, O. Kanoun, and H.-R. Tränkler, "Characterizing aging effects of lithium ion batteries by impedance spectroscopy," Electrochimica Acta, vol. 51, pp. 1664-1672, 2006.
[37] N. Ding, J. Xu, Y. Yao, G. Wegner, X. Fang, C. Chen, et al., "Determination of the diffusion coefficient of lithium ions in nano-Si," Solid State Ionics, vol. 180, pp. 222-225, 2009.
[38] M. Obrovac and L. Krause, "Reversible cycling of crystalline silicon powder," Journal of The Electrochemical Society, vol. 154, pp. A103-A108, 2007.
[39] J. Li and J. Dahn, "An in situ X-ray diffraction study of the reaction of Li with crystalline Si," Journal of The Electrochemical Society, vol. 154, pp. A156-A161, 2007.
[40] U. Kasavajjula, C. Wang, and A. J. Appleby, "Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells," Journal of Power Sources, vol. 163, pp. 1003-1039, 2007.
[41] M. Obrovac and L. Christensen, "Structural changes in silicon anodes during lithium insertion/extraction," Electrochemical and Solid-State Letters, vol. 7, pp. A93-A96, 2004.
[42] T. Hatchard and J. Dahn, "In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon," Journal of The Electrochemical Society, vol. 151, pp. A838-A842, 2004.
[43] B. Philippe, R. m. Dedryvère, J. Allouche, F. Lindgren, M. Gorgoi, H. k. Rensmo, et al., "Nanosilicon electrodes for lithium-ion batteries: interfacial mechanisms studied by hard and soft X-ray photoelectron spectroscopy," Chemistry of Materials, vol. 24, pp. 1107-1115, 2012.
[44] Y. M. Lee, J. Y. Lee, H.-T. Shim, J. K. Lee, and J.-K. Park, "SEI layer formation on amorphous Si thin electrode during precycling," Journal of The Electrochemical Society, vol. 154, pp. A515-A519, 2007.
[45] S. Xun, X. Song, L. Wang, M. Grass, Z. Liu, V. Battaglia, et al., "The Effects of Native Oxide Surface Layer on the Electrochemical Performance of Si Nanoparticle-Based Electrodes," Journal of The Electrochemical Society, vol. 158, pp. A1260-A1266, 2011.
[46] P. Yu, B. N. Popov, J. A. Ritter, and R. E. White, "Determination of the lithium ion diffusion coefficient in graphite," Journal of The Electrochemical Society, vol. 146, pp. 8-14, 1999.
[47] B. Key, R. Bhattacharyya, M. Morcrette, V. Seznéc, J.-M. Tarascon, and C. P. Grey, "Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries," Journal of the American Chemical Society, vol. 131, pp. 9239-9249, 2009.
[48] R. Ruffo, S. S. Hong, C. K. Chan, R. A. Huggins, and Y. Cui, "Impedance analysis of silicon nanowire lithium ion battery anodes," The Journal of Physical Chemistry C, vol. 113, pp. 11390-11398, 2009.
[49] Y.-M. Kang, J.-Y. Go, S.-M. Lee, and W.-U. Choi, "Impedance study on the correlation between phase transition and electrochemical degradation of Si-based materials," Electrochemistry communications, vol. 9, pp. 1276-1281, 2007.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw