進階搜尋


下載電子全文  
系統識別號 U0026-3107201316125200
論文名稱(中文) 以GPU模擬阿伐粒子在背景亂流中的漂移
論文名稱(英文) Fusion born alpha particle drift simulation with background turbulence by GPU computing
校院名稱 成功大學
系所名稱(中) 太空天文與電漿科學研究所
系所名稱(英) Assistant, Institute of Space, Astrophysical and Plasma Sciences(ISAPS)
學年度 101
學期 2
出版年 102
研究生(中文) 黃柏慈
研究生(英文) BOTSZ HUANG
學號 LA6991120
學位類別 碩士
語文別 英文
論文頁數 46頁
口試委員 指導教授-西村泰太郎
口試委員-陳秋榮
口試委員-西田靖
中文關鍵字 阿伐粒子  漂移波亂流  GPU平行計算 
英文關鍵字 Alpha particle  drift-wave turbulence,  GPU parallel computation 
學科別分類
中文摘要 本研究討論核融合阿伐粒子在漂移波背景亂流下的漂移行為。本模型以粒子迴旋中心運動與漂移波檢驗在背景亂流下第二不變量是
否依然成立。藉此模型,粒子的參數和背景亂流的結構都是可以被直接操控,例如可改變粒子的能量與亂流的結構。在解析工作部分發現 island 大小與粒子平行磁力線的速度相關,且 island 的位置與 ${omega}_{star} / V_{parallel}$ 有關。統計數據的結果與解析工作吻合。數值模擬則指出第二不變量不意因漂移波的擾動而被否決。然而,在鄰近 banana tips 的區域,卻因為粒子動能趨近於零而對背景亂流相對敏感。該數值分析工作運行於 GPU 之平行運算上以有效減少計算資源與時間。
英文摘要 This thesis investigates the fusion born alpha particle behavior in the presence of drift wave turbulence in toroidal geometry. We employed the guiding center motion and ballooning type drift wave as simulation model to examine the conservation of second adiabatic invariant. By the orbit-following code, we are able to control the parameter of particle and turbulence structure, e.g. particle energy and turbulence amplitude. In the analytical work , we found that parallel velocity is related to island width and the shift of island is proportional to ${omega}_{star}/V_{parallel}$. The statistical result is consistent with analytical work. In numerical work, for trapped particles, the second adiabatic does not easily break. Furthermore, the banana tip is sensitive to $E imes B$ drift since the $V_{parallel}$ is near zero. These numerical work are demonstrated by GPU's parallel computation , we can effectively reduce computation time and resource.
論文目次 Introduction 3
2 Simulation Model 5
2.1 Derivation of guiding center equation ....... 5
2.2 The electric field by a ballooning eigenmode structure. 8
2.3 Guiding center equation in flux coordinate ......... 10
3 Theoretical Analysis...................................13
3.1 Conservation of magnetic motment .............13
3.2 Action-angle variable and second adiabatic invariant J.15
3.3 Banana orbit in the absence of drift wave turbulence .17
3.4 The Kolmogorov-Arnol’d-Moser theorem .... 19
4 Particle simulation results 21
4.1 Particle motion without fluctuation; neoclasical transport...21
4.2 Passing particle motion in the presence of electrostatic fluctuation...22
4.3 Radial shift of islands due to finite ω⋆ effects . . .27
4.4 Overlapping criterion of electric islands; a Hamiltonian analysis ............................30
4.5 Diffusion of passing particles ...................34
4.6 Diffusion of trapped particles....................34
5 Summary and future work 39

A Methods of statistical analysis........................43
A.1 Derivation of cumulants ........................43
A.2 Method of least squares ........................ 45
參考文獻 [1] Wenlu Zhang, Zhihong Lin, and Liu Chen. Transport of energetic particles by microturbulence in magnetized plasmas. Phys. Rev. Lett.,101:095001, Aug 2008.
[2] T. Hauff, M. J. Pueschel, T. Dannert, and F. Jenko. Electrostatic and magnetic transport of energetic ions in turbulent plasmas. Phys. Rev. Lett., 102:075004, Feb 2009.
[3] C. Z. Cheng and Liu Chen. Unstable universal drift eigenmodes in toroidal plasmas. Physics of Fluids, 23(9):1770–1773, 1980.
[4] R.G. Littlejohn. Variational principles of guiding centre motion. Journal of Plasma Physics, 29:111–125, 1 1983.
[5] J. W. Connor, R. J. Hastie, and J. B. Taylor. High mode number stability of an axisymmetric toroidal plasma. Proceedings of the Royal
Society of London. A. Mathematical and Physical Sciences, 365(1720):117, 1979.
[6] Y. Nishimura and M. Azumi. Stochastic particle transport in a magnetic island due to electrostatic drift waves. Physics of Plasmas, 4(7):2365–2375, 1997.
[7] C.M. Bender and S.A. Orszag. Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory. Advanced Mathematical Methods for Scientists and Engineers. Springer, 1999.
[8] J. Wesson. Tokamaks. International Series of Monographs on Physics. OUP Oxford, 2011.
[9] J.B. Marion and S.T. Thornton. Classical Dynamics of Particles and Systems. Saunders College Publishing, Harcourt Brace College Publishers, 1995. 43
[10] A.J. Lichtenberg and M.A. Lieberman. Regular and chaotic dynamics. Applied mathematical sciences. Springer-Verlag, 1992.
[11] A. Fasano and S. Marmi. Analytical Mechanics: An Introduction. Oxford graduate texts in mathematics. Oxford University Press, 2006.
[12] P. C. Liewer, J. M. McChesney, S. J. Zweben, and R. W. Gould. Temperature fluctuations and heat transport in the edge regions of a tokamak. Physics of Fluids, 29(1):309–317, 1986.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-08-26起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-08-26起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw