
系統識別號 
U00263107201310591000 
論文名稱(中文) 
耗散系統中量子邏輯閘最佳化控制之研究 
論文名稱(英文) 
Quantum optimal control of quantum logical gate in dissipation systems 
校院名稱 
成功大學 
系所名稱(中) 
工程科學系碩博士班 
系所名稱(英) 
Department of Engineering Science 
學年度 
101 
學期 
2 
出版年 
102 
研究生(中文) 
倪峻傑 
研究生(英文) 
ChunChieh Ni 
學號 
N96004442 
學位類別 
碩士 
語文別 
中文 
論文頁數 
131頁 
口試委員 
指導教授黃吉川 口試委員李哲明 口試委員廖德祿 口試委員陳俊良 口試委員謝金源

中文關鍵字 
量子資訊
量子控制
量子計算
量子糾纏邏輯閘

英文關鍵字 
Quantum information
Quantum control
Quantum computing
Quantum entangling gates

學科別分類 

中文摘要 
量子狀態保真度已被廣泛地用來判別模擬的量子邏輯閘與理想量子邏輯閘間的相似性；然而如同本論文所顯示，對於設計高可靠度量子邏輯閘而言，透過量子狀態保真度來探討是不夠客觀的。在此本論文以量子過程解析最佳化控制理論結合開放式系統，針對整個量子過程進行剖析，解決了量子狀態保真度客觀性的不足，並設計高可靠度的量子邏輯閘。我們以快速收斂糾纏回授演算法為出發，探討1量子位元CO分子轉振能階系統於開放式環境中，系統如何受到影響，而後利用自旋系統在開放式環境中實現2與3量子位元系統之糾纏邏輯閘，模擬結果顯示量子過程解析保真度均能高達97%以上。最後利用基因演算法以脈衝雷射之電場為出發，實現1量子位元CO分子轉振能階系統NOT與Hadamard量子邏輯閘，模擬結果顯示量子過程解保真度均高達97%以上。

英文摘要 
Quantum state fidelity has been widely used to indicate whether simulated quantum gate is close to an ideal one. However, as shown in the thesis, it is not objective enough to show the similarity between real and ideal quantum gates. In order to avoid this shortcoming, we apply quantum process fidelity for designing reliable and faithful quantum logic gates. In this thesis, we design high reliable quantum logic gates in open quantum systems with quantum process tomography. Firstly, we take the rovibratoinal states of CO molecule to discuss how the systems were influenced by environment in one qubit quantum open system. Sequentially, the quantum entangling logic gates were simulated in open spin systems, the result also shows that the quantum process fidelities can achieve up to 97%. Finally, we use genetic algorithm to realize NOT and Hadamard quantum logic gates in CO molecule quantum systems and both of quantum process fidelities can be better than 97%. The proposed scheme can provide a basis for design and implementation of quantum computers.

論文目次 
中文摘要 .................................I
Abstract.................................II
致謝 .................................III
目錄 .................................IV
表目錄 .................................VII
圖目錄 .................................VIII
符號說明 .................................XIV
第一章 緒論 .........................1
11 研究背景 .........................1
12 文獻回顧 .........................3
13 研究動機 .........................5
14 本文架構 .........................6
第二章 量子資訊與密度矩陣理論 .........7
21 量子位元與量子邏輯閘 .........7
22 量子純態、混合態與糾纏態 .........12
23 密度矩陣與密度算符運動方程式 .........14
24 希爾伯特空間(Hilbert Space)........16
25 約化李維空間(Liouville Space).....18
26 量子力學四大公設 .................21
27 量子保真度 .................23
271 量子狀態保真度 .................23
272 量子過程保真度 .................23
273 量子狀態保真度與量子過程保真度比較.....24
第三章 開放式量子耗散系統 .................25
31 超級算符(Superoperator) .........25
32 量子耗散通道 .................27
321 Depolarizing channel .........27
322 Phasingdamping channel .........30
323 Amplitudedamping channel........32
33 馬可夫過程耗散方程 .................33
第四章 最佳化控制理論 .................35
41 CO分子轉動振動能階模型 .........35
42 Nitrogenvacancy center .........40
43 量子過程解析最佳化控制理論 .........43
431 量子過程解析與量子過程保真度計算......43
432 目標泛涵建立 .................47
433 快速收斂疊代演算法 .................48
434 數值方法計算尤拉拉格朗日方程式.......51
44 基因演算法 .................53
第五章 模擬結果分析與討論 .................58
51 CO分子能階耗散系統 .................58
511 對角線項耗散 .................58
512 非對角線項耗散 .................79
513 馬可夫過程近似耗散 .................95
52 自旋物理系統 .................107
53 基因演算法量子邏輯閘實現.............117
54 改善方法建議 .................120
第六章 結論與未來展望 .................121
61 結論 .........................121
62 未來展望 .........................122
參考文獻 .........................123

參考文獻 
[1] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O'Brien, "Quantum computers," Nature, vol. 464, pp. 4553, Mar 2010.
[2] P. Hemmer and J. Wrachtrup, "Where Is My Quantum Computer?," Science, vol. 324, pp. 473474, Apr 2009.
[3] C. H. Bennett and P. W. Shor, "Quantum information theory," Ieee Transactions on Information Theory, vol. 44, pp. 27242742, Oct 1998.
[4] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information: Cambridge university press, 2010.
[5] S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L. M. Duan, and C. Monroe, "Quantum Teleportation Between Distant Matter Qubits," Science, vol. 323, pp. 486489, Jan 2009.
[6] M. L. Hu, "Teleportation of the onequbit state with environmentdisturbed recovery operations," European Physical Journal D, vol. 64, pp. 531538, Oct 2011.
[7] R. P. Feynman, "QUANTUMMECHANICAL COMPUTERS," Foundations of Physics, vol. 16, pp. 507531, Jun 1986.
[8] P. W. Shor, "Algorithms for quantum computation: discrete logarithms and factoring," presented at the Proceedings of the 35th Annual Symposium on Foundations of Computer Science, 1994.
[9] L. K. Grover, "A fast quantum mechanical algorithm for database search," presented at the Proceedings of the twentyeighth annual ACM symposium on Theory of computing, Philadelphia, Pennsylvania, USA, 1996.
[10] L. K. Grover, "Quantum mechanics helps in searching for a needle in a haystack," Physical Review Letters, vol. 79, pp. 325328, Jul 1997.
[11] J. I. Cirac and P. Zoller, "QUANTUM COMPUTATIONS WITH COLD TRAPPED IONS," Physical Review Letters, vol. 74, pp. 40914094, May 1995.
[12] F. SchmidtKaler, H. Haffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, et al., "Realization of the CiracZoller controlledNOT quantum gate," Nature, vol. 422, pp. 408411, Mar 2003.
[13] J. T. Barreiro, M. Muller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, et al., "An opensystem quantum simulator with trapped ions," Nature, vol. 470, pp. 486491, Feb 2011.
[14] N. A. Gershenfeld and I. L. Chuang, "Bulk spinresonance quantum computation," Science, vol. 275, pp. 350356, Jan 1997.
[15] J. A. Jones and M. Mosca, "Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer," Journal of Chemical Physics, vol. 109, pp. 16481653, Aug 1998.
[16] R. Marx, A. F. Fahmy, J. M. Myers, W. Bermel, and S. J. Glaser, "Approaching fivebit NMR quantum computing," Physical Review A, vol. 62, Jul 2000.
[17] D. Loss and D. P. DiVincenzo, "Quantum computation with quantum dots," Physical Review A, vol. 57, p. 120, 1998.
[18] E. Togan, Y. Chu, A. Trifonov, L. Jiang, J. Maze, L. Childress, et al., "Quantum entanglement between an optical photon and a solidstate spin qubit," in Frontiers in Optics, 2011.
[19] J. P. Palao and R. Kosloff, "Molecular quantum computing by an optimal control algorithm for unitary transformations," arXiv preprint quantph/0204101, 2002.
[20] K. Mishima, K. Takumo, and K. Yamashita, "Quantum computing using molecular electronic and vibrational states," Chemical Physics, vol. 343, pp. 6175, Jan 2008.
[21] Y. Ohtsuki, "Simulating quantum search algorithm using vibronic states of I2 manipulated by optimally designed gate pulses," New Journal of Physics, vol. 12, Apr 2010.
[22] K. Mishima and K. Yamashita, "Quantum computing using molecular vibrational and rotational modes of the openshell (NO)N14O16 molecule," Chemical Physics, vol. 367, pp. 6374, Feb 2010.
[23] K. Shioya, K. Mishima, and K. Yamashita, "Quantum computing using molecular vibrational and rotational modes," Molecular Physics, vol. 105, pp. 12831295, 2007.
[24] R. B. Wu and H. Rabitz, "Control landscapes for open system quantum operations," Journal of Physics aMathematical and Theoretical, vol. 45, Dec 2012.
[25] R. Chakrabarti and H. Rabitz, "Quantum control landscapes," International Reviews in Physical Chemistry, vol. 26, pp. 671735, 2007.
[26] D. Dong and I. R. Petersen, "Quantum control theory and applications: a survey," Iet Control Theory and Applications, vol. 4, pp. 26512671, Dec 2010.
[27] F. F. Floether, P. de Fouquieres, and S. G. Schirmer, "Robust quantum gates for open systems via optimal control: Markovian versus nonMarkovian dynamics," New Journal of Physics, vol. 14, Jul 2012.
[28] J. Werschnik and E. K. U. Gross, "Quantum optimal control theory," Journal of Physics BAtomic Molecular and Optical Physics, vol. 40, pp. R175R211, Sep 2007.
[29] W. S. Zhu and H. Rabitz, "A rapid monotonically convergent iteration algorithm for quantum optimal control over the expectation value of a positive definite operator," Journal of Chemical Physics, vol. 109, pp. 385391, Jul 1998.
[30] W. S. Zhu, J. Botina, and H. Rabitz, "Rapidly convergent iteration methods for quantumoptimal control of population," Journal of Chemical Physics, vol. 108, pp. 19531963, Feb 1998.
[31] Y. Ohtsuki, W. S. Zhu, and H. Rabitz, "Monotonically convergent algorithm for quantum optimal control with dissipation," Journal of Chemical Physics, vol. 110, pp. 98259832, May 1999.
[32] Y. Ohtsuki, G. Turinici, and H. Rabitz, "Generalized monotonically convergent algorithms for solving quantum optimal control problems," Journal of Chemical Physics, vol. 120, pp. 55095517, Mar 2004.
[33] S. G. Schirmer, M. D. Girardeau, and J. V. Leahy, "Efficient algorithm for optimal control of mixedstate quantum systems," Physical Review A, vol. 61, pp. art. no.012101, Jan 2000.
[34] A. P. Peirce, M. A. Dahleh, and H. Rabitz, "OPTIMALCONTROL OF QUANTUMMECHANICAL SYSTEMS  EXISTENCE, NUMERICAL APPROXIMATION, AND APPLICATIONS," Physical Review A, vol. 37, pp. 49504964, Jun 1988.
[35] Maximov, II, Z. Tosner, and N. C. Nielsen, "Optimal control design of NMR and dynamic nuclear polarization experiments using monotonically convergent algorithms," Journal of Chemical Physics, vol. 128, May 2008.
[36] M. J. Rethinam, A. K. Javali, E. C. Behrman, J. E. Steck, and S. R. Skinner, "A genetic algorithm for finding pulse sequences for NMR quantum computing," 04/29 2004.
[37] A. D. Duce, S. Savory, and P. Bayvel, "Design and optimisation of quantum logic circuits for a threequbit DeutschJozsa algorithm implemented with opticallycontrolled, solidstate quantum logic gates," 10/09 2009.
[38] Y. Hardy and W. H. Steeb, "GENETIC ALGORITHMS AND OPTIMIZATION PROBLEMS IN QUANTUM COMPUTING," International Journal of Modern Physics C, vol. 21, pp. 13591375, Nov 2010.
[39] P. Pellegrini, S. Vranckx, and M. DesouterLecomte, "Implementing quantum algorithms in hyperfine levels of ultracold polar molecules by optimal control," Physical Chemistry Chemical Physics, vol. 13, pp. 1886418871, 2011.
[40] C. N.M. Jorge, H. C. Rosu, and R. LopezSandoval, "Genetic algorithm optimization of entanglement," 04/18 2006.
[41] C. Gollub and R. de VivieRiedle, "Multiobjective genetic algorithm optimization of 2Dand 3DPareto fronts for vibrational quantum processes," New Journal of Physics, vol. 11, Jan 2009.
[42] M. Grace, C. Brif, H. Rabitz, I. A. Walmsley, R. L. Kosut, and D. A. Lidar, "Optimal control of quantum gates and suppression of decoherence in a system of interacting twolevel particles," Journal of Physics BAtomic Molecular and Optical Physics, vol. 40, pp. S103S125, May 2007.
[43] A. Malossini, E. Blanzieri, and T. Calarco, "Quantum genetic optimization," Ieee Transactions on Evolutionary Computation, vol. 12, pp. 231241, Apr 2008.
[44] C. M. Tesch and R. de VivieRiedle, "Quantum computation with vibrationally excited molecules," Physical Review Letters, vol. 89, Oct 2002.
[45] U. Troppmann, C. M. Tesch, and R. de VivieRiedle, "Preparation and addressability of molecular vibrational qubit states in the presence of anharmonic resonance," Chemical Physics Letters, vol. 378, pp. 273280, Sep 2003.
[46] C. M. Tesch and R. de VivieRiedle, "Vibrational molecular quantum computing: Basis set independence and theoretical realization of the DeutschJozsa algorithm," Journal of Chemical Physics, vol. 121, pp. 1215812168, Dec 2004.
[47] D. Babikov, "Accuracy of gates in a quantum computer based on vibrational eigenstates," Journal of Chemical Physics, vol. 121, pp. 75777585, Oct 2004.
[48] Y. Ohtsuki, K. Nakagami, Y. Fujimura, W. S. Zhu, and H. Rabitz, "Quantum optimal control of multiple targets: Development of a monotonically convergent algorithm and application to intramolecular vibrational energy redistribution control," Journal of Chemical Physics, vol. 114, pp. 88678876, May 2001.
[49] C. Gollub, M. Kowalewski, and R. de VivieRiedle, "Monotonic convergent optimal control theory with strict limitations on the spectrum of optimized laser fields," Physical Review Letters, vol. 101, Aug 2008.
[50] D. J. Tannor and S. A. Rice, "COHERENT PULSE SEQUENCE CONTROL OF PRODUCT FORMATION IN CHEMICALREACTIONS," Advances in Chemical Physics, vol. 70, pp. 441523, 1988.
[51] M. N. Kobrak and S. A. Rice, "Coherent population transfer via a resonant intermediate state: The breakdown of adiabatic passage," Physical Review A, vol. 57, pp. 11581163, Feb 1998.
[52] S. Chelkowski, A. D. Bandrauk, and P. B. Corkum, "EFFICIENT MOLECULAR DISSOCIATION BY A CHIRPED ULTRASHORT INFRAREDLASER PULSE," Physical Review Letters, vol. 65, pp. 23552358, Nov 1990.
[53] D. Sugny, M. Ndong, D. Lauvergnat, Y. Justum, and M. DesouterLecomte, "Laser control in open molecular systems: STIRAP and optimal control," Journal of Photochemistry and Photobiology aChemistry, vol. 190, pp. 359371, Aug 2007.
[54] H. Nakazato, Y. Hida, K. Yuasa, B. Militello, A. Napoli, and A. Messina, "Solution of the Lindblad equation in the Kraus representation," Physical Review A, vol. 74, Dec 2006.
[55] W. Cui, Z. R. Xi, and Y. Pan, "Optimal decoherence control in nonMarkovian open dissipative quantum systems," Physical Review A, vol. 77, Mar 2008.
[56] P. M. Poggi, F. C. Lombardo, and D. A. Wisniacki, "Controlling open quantum systems using fast transitions," Physical Review A, vol. 87, Feb 2013.
[57] T. SchulteHerbruggen, A. Sporl, N. Khaneja, and S. J. Glaser, "Optimal control for generating quantum gates in open dissipative systems," Journal of Physics BAtomic Molecular and Optical Physics, vol. 44, Aug 2011.
[58] H. Hwang and H. S. Goan, "Optimal control for nonMarkovian open quantum systems," Physical Review A, vol. 85, Mar 2012.
[59] S. Beyvers, Y. Ohtsuki, and P. Saalfrank, "Optimal control in a dissipative system: Vibrational excitation of CO/Cu(100) by IR pulses," Journal of Chemical Physics, vol. 124, Jun 2006.
[60] M. D. Grace, J. Dominy, R. L. Kosut, C. Brif, and H. Rabitz, "Environmentinvariant measure of distance between evolutions of an open quantum system," New Journal of Physics, vol. 12, Jan 2010.
[61] H. G. Duan and X. T. Liang, "Entanglement detection for bipartite systems with continuous variables in nonMarkovian baths," Physical Review A, vol. 83, Mar 2011.
[62] Z. X. Man, Y. J. Zhang, F. Su, and Y. J. Xia, "Entanglement dynamics of multiqubit system in Markovian and nonMarkovian reservoirs," European Physical Journal D, vol. 58, pp. 147151, May 2010.
[63] J. Zhou, C. J. Wu, M. Y. Zhu, and H. Guo, "NonMarkovian dynamics of entanglement for multipartite systems," Journal of Physics BAtomic Molecular and Optical Physics, vol. 42, Nov 2009.
[64] M. M. Muller, D. M. Reich, M. Murphy, H. Yuan, J. Vala, K. B. Whaley, et al., "Optimizing entangling quantum gates for physical systems," Physical Review A, vol. 84, Oct 2011.
[65] M. L. Hu, "State transfer in dissipative and dephasing environments," European Physical Journal D, vol. 59, pp. 497507, Sep 2010.
[66] O. Guhne, F. Bodoky, and M. Blaauboer, "Multiparticle entanglement under the influence of decoherence," Physical Review A, vol. 78, Dec 2008.
[67] F. Verstraete, M. M. Wolf, and J. I. Cirac, "Quantum computation and quantumstate engineering driven by dissipation," Nature Physics, vol. 5, pp. 633636, Sep 2009.
[68] E. Kamil and S. Dattagupta, "Dephasing of a qubit due to quantum and classical noise," PramanaJournal of Physics, vol. 79, pp. 357376, Sep 2012.
[69] D. P. DiVincenzo, "The physical implementation of quantum computation," Fortschritte Der PhysikProgress of Physics, vol. 48, pp. 771783, 2000.
[70] F. Platzer, F. Mintert, and A. Buchleitner, "Optimal dynamical control of manybody entanglement," arXiv preprint arXiv:0910.4908, 2009.
[71] A. R. Carvalho, F. Mintert, and A. Buchleitner, "Decoherence and multipartite entanglement," arXiv preprint quantph/0410208, 2004.
[72] A. Gilchrist, N. K. Langford, and M. A. Nielsen, "Distance measures to compare real and ideal quantum processes," Physical Review A, vol. 71, Jun 2005.
[73] J. S. Lundeen, A. Feito, H. ColdenstrodtRonge, K. L. Pregnell, C. Silberhorn, T. C. Ralph, et al., "Tomography of quantum detectors," Nature Physics, vol. 5, pp. 2730, Jan 2009.
[74] H. F. Hofmann, "Complementary classical fidelities as an efficient criterion for the evaluation of experimentally realized quantum operations," Physical Review Letters, vol. 94, Apr 2005.
[75] D. Stefanatos, "Optimal Control of Coupled Spin Dynamics in the Presence of Relaxation," Harvard University Cambridge, Massachusetts, 2005.

論文全文使用權限 
同意授權校內瀏覽/列印電子全文服務，於20150903起公開。同意授權校外瀏覽/列印電子全文服務，於20150903起公開。 


