進階搜尋


下載電子全文  
系統識別號 U0026-3107201218520900
論文名稱(中文) 以Landau-Zener法分析波導模態轉換器於非絕熱轉換之頻寬特性
論文名稱(英文) Bandwidth Analysis of Waveguide Mode Converters Based on Landau-Zener Analysis of Non-adiabatic Energy Crossing
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 100
學期 2
出版年 101
研究生(中文) 蕭甫宸
研究生(英文) Fu-Chen Hsiao
電子信箱 alex770321@gmail.com
學號 L76991465
學位類別 碩士
語文別 英文
論文頁數 57頁
口試委員 指導教授-曾碩彥
口試委員-徐旭政
口試委員-詹明哲
中文關鍵字 量子力學  波導光學 
英文關鍵字 waveguide  quantum mechanics  wave optics 
學科別分類
中文摘要 這些年來,許多研究團隊逐漸對於量子力學與波導光學的相似性和應用層面逐漸感到興趣,並且也利用了這兩個領域之間的相似性發展出許多有趣的元件和突破了許多傳統上在波導光學部分所遇到的瓶頸。其中一項研究主題,就是所謂的波導模態的轉換器,藉由在波導上蝕刻出周期性的結構,達到在波導裡建構出周期性的折射率變化,更進一步達到模態轉換的目的。以往的研究顯示,依照絕熱理論所推算出來的折射率變化結構,可以讓模態轉換的路徑依循著絕熱轉換路線,並且得到近乎100%的模態轉換效率。然而,在不同的輸入波長之下,會導致波導轉換器系統產生波長的失調誤差。而這種失調情況即會造成波導轉換器在做模態轉換時,偏離絕熱路線,並且嚴重的影響模態的轉換效率。因此,我們期望能夠分析在存在失調誤差的情況之下波導模態轉換器的轉換效率,藉此我們才可以設計出最適用的折射率變化結構。然而,依照傳統的偶合模態理論(Coupled Mode Theory)或是光束傳播分析法(Beam Propagation Method)都無法提供一個解析的分析結果讓我們可以得到轉換效率與波導結構參數之間的關係。因此,在本篇論文中,我們引用的藍道基納分析法(Landau-Zener Method),針對在波導模態轉換器中,因為波長失調所產生的非絕熱的轉換點進行分析,藉此得到了一個在存在波長失調情況之下的模態轉換效率的解析解。此外,我們還利用了這個解析解,來去預測在不同的波導結構參數之下,模態轉換的效率與趨勢。
英文摘要 Mode conversion can be achieved in multimode waveguides using optical analogy of stimulated Raman adiabatic passage. According to this, we can describe the mode conversion in a step-index multimode waveguide with detuning as a three-level atomic system and analyze it by using the analogies between quantum mechanics and wave optics. In this thesis, we derived the couple mode equation for adiabatic mode conversion via an intermediate mode with wavelength detunings for an engineered step-index multimode waveguide. The Landau-Zener model of non-adiabatic crossing is used to analyze the spectral response of the mode converters and shown to be in good agreement with numerical solutions of the coupled mode equations. The analytical expressions from Landau-Zener analysis offer useful insight into the spectral properties of the mode converters and suggest bandwidth tenability of these photonic devices. Furthermore, we demonstrate bandwidth tenability of the mode converter by some numerical examples.
論文目次 ABSTRACT........................I
摘要 .......................II
ACKNOWLEDGE...................III
TABLE OF CONTENTS..............IV
LIST OF FIGURES................VI
1 Introduction..................1
2 Quantum mechanics of the atom-radiation interaction......................4
2.1 Hermitian operator..........4
2.2 Form of the Hamiltonian in atom-radiation interaction......................5
2.3 Light-matter interaction in a two-level atomic system and the Rotating Wave Approximation(RWA)
.................................8
2.4 The Hamiltonian of three-level atomic system with wavelength detuning.............12
2.5 The evolution in a three level system under two-photon resonance.......................16
3 Wave optics..................22
3.1 Wave equation for electric field in optical waveguide.......................22
3.2 Coupled-wave analysis......24
3.3 Coupled-mode equation under the codirectional coupling condition.......................28
3.4 Analogies between wave optics and quantum mechanic........................30
4 Landau-Zener analysis with non-adiabatic crossing of eigenvalues.....................33
4.1 Non-adiabatic crossing analysis of energy levels Landau-Zener analysis...........34
4.2 Landau-Zener transitions and population transfer in a three-level system driven by two laser pulses
................................38
4.3 Bandwidth tunability of the mode converters......................48
4.3.1 Bandwidth tunability depend on spatial delay of coupling
coefficient.....................48
4.3.2 Bandwidth tunability depend on the length of the waveguide.......................52
5 Conclusion...................55
Reference.......................56
參考文獻 [1]A. A. Rangelov, U. Gaubat, and N. V. Vitanov(2010), “Broadband adiabatic conversion of light polarization,” Optics Commun., vol. 283, pp. 3891-3894.
[2]J. B. Khurgin, M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich(2007), “Add-drop filters based on mode-conversion cavities,” Optics Lett., vol. 32, pp. 1253-1255.
[3]E. Paspalakis(2006), “Adiabatic three-waveguide directional coupler,” Optics Commun., vol. 258, no. 1, pp. 30~34.
[4]S. Longhi(2009), “Quantum-optical analogies using photonic structures,” Laser & Photon. Rev., vol. 3, no. 3, pp. 243~261.
[5]H.-C. Liu and A. Yariv(2009), “Grating induced transparency (GIT) and the dark mode in optical waveguides,” Opt. Express, vol.17, no. 14, pp. 11710~11718.
[6]J. M. Castro, D. F. Geraghty, S. Honkanen, C. M. Greiner, D. Iazikov, and T. W. Mossberg(2005), “Demonstration of mode conversion using antisymmetric waveguide Bragg gratings,” Optics Exp., vol. 13, pp. 4180-4184.
[7]F. Dreisow, A. Szameit, M. Heinrich, S. Nolte, A. T¨unnermann, M. Ornigotti and S. Longhi(2009), “Direct observation of Landau-Zener tunneling in a curved optical waveguide coupler,” Phys. Rev. A., vol. 79, pp. 055802.
[8]M.-C. Wu, F.-C. Hsiao, and S.-Y. Tseng, “Adiabatic mode conversion in multimode waveguides using chirped computer-generated planar holograms(2011),” IEEE Photonics Technol. Lett., vol. 23, no. 12, pp. 807-809.
[9]K. Bergmann, H. Theuer, B. W. Shore(1998), “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys., vol. 70, no. 3, pp. 1003~1025.
[10]S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta(2007), “Coherent tunneling by adiabatic passage in an optical waveguide system,” Phys. Rev. B, vol. 76, pp. 201101(R).
[11]S.-Y. Tseng and M.-C. Wu(2010), “Adiabatic mode conversion in multimode waveguides using computer-generated planar holograms,” IEEE Photonics Technol. Lett., vol. 22, no. 16, pp. 1211~1213.
[12]S.-Y. Tseng and M.-C.Wu(2010), “Mode conversion/splitting by optical analogy of multistate stimulated Raman adiabatic passage in multimode waveguides,” J. Lightwave Technol., vol. 28, no. 24, pp. 3529~3534.
[13]N. V. Vitanov, T. Halfmann(2001), B. W. Shore, and K. Bergmann, “Laser-induced population transfer by adiabatic passage techniques,” Annu. Rev. Phys. Chem., vol. 52, pp. 763-809.
[14]H.-C. Liu and A. Yariv(2009), “Grating induced transparency (GIT) and the dark mode in optical waveguides,” Optics Exp., vol. 17, pp. 11710-11718.
[15]C. Zener(1932), “Non-adiabatic crossing of energy levels,” Proc. R. Soc. Lond. A, vol. 137, pp. 696-702.
[16]V.I Romanenko and L.P Yatsenko(1997), “Adiabatic population transfer in the three-level Λ-system: two-photon lineshape,” Optics Commun., vol. 140, no. 5-6, pp. 231~236.
[17]K. Kawano and T. Kiton(2001), Introduction to Optical Waveguide Analysis: Solving Maxwell's Equations and the Schrödinger Equation, New York: WIELY.
[18]L. B. Soldano, and E. C. M. Pennings(1995), “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol., vol. 13, no. 4, pp. 615~627.
[19]M. V. Danileiko, V. I. Romanenko, L. P. Yatsenko(1994), “Landau-Zener transitions and population transfer in a three-level system driven by two delayed laser pulses,” Optics Commun., vol. 109, no. 5-6, pp. 462~466.
[20]C. L.Tang(2005), Fundamentals of Quantum Mechanics: For Solid State Electronics and Optics(1st ed.), New York: Cambridge University Press .
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-08-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-08-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw