進階搜尋


下載電子全文  
系統識別號 U0026-3107201216194900
論文名稱(中文) 巨噬細胞移動抑制因子於順鉑引起急性腎損傷的角色
論文名稱(英文) The Role of Macrophage Migration Inhibitory Factor in Cisplatin-induced Acute Kidney Injury
校院名稱 成功大學
系所名稱(中) 臨床醫學研究所
系所名稱(英) Institute of Clinical Medicine
學年度 100
學期 2
出版年 101
研究生(中文) 林玉慧
研究生(英文) Yu-Huei Lin
學號 s96994023
學位類別 碩士
語文別 英文
論文頁數 68頁
口試委員 口試委員-邱元佑
口試委員-邢中熹
指導教授-林秋烽
中文關鍵字 順鉑  急性腎臟損傷  腎發炎  腎毒性  細胞凋亡  腎小管壞死  肝醣合成酶激酶3  巨噬細胞移行抑制因子  皮質部腎小管細胞  硫胱氨酸蛋白酶  脫氧核醣核酸損傷  訊息傳遞  抗癌 
英文關鍵字 Cisplatin  AKI  Renal inflammation  Nephrotoxicity  Apoptosis  Tubular necrosis  GSK-3  MIF  Cortical tubular cell  Caspase  DNA damage  Signaling  Anticancer 
學科別分類
中文摘要 抗癌藥物順鉑誘導急性腎臟損傷 (AKI) 係經過腎發炎及腎毒性產生包括腎小管細胞凋亡伴隨壞死現象。在本研究中利用順鉑誘導急性腎臟損傷模式,我們探討肝醣合成酶激酶3 (GSK-3) 促使腎毒性產生繼而誘發巨噬細胞移行抑制因子 (MIF) 媒介腎發炎。體內動物模式證明藥物性抑制巨噬細胞移行抑制因子有效地減緩順鉑誘導急性腎臟損傷;然而,體外細胞模式證明巨噬細胞移行抑制因子的表現並不參與順鉑誘導腎小管細胞凋亡。免疫組織染色顯示腎臟器官內巨噬細胞移行抑制因子特定地表現在腎小管細胞,並且順鉑刺激會造成細胞內巨噬細胞移行抑制因子表現的缺失。無論在體內動物模式或體外細胞模式,實驗證實伴隨著順鉑誘導腎毒性產生會進而引起皮質部腎小管細胞內巨噬細胞移行抑制因子表現缺失或由胞內釋出至胞外。體外細胞模式證明包括硫胱氨酸蛋白酶的活化、脫氧核醣核酸損傷反應的誘導以及表皮生長因子接受器/磷酸激酶Src/蛋白質酶C-δ/活性氧化物/ p38有絲分裂原活化蛋白質激酶/ c-Jun胺基末端激酶的訊息傳遞都可調控於順鉑細胞毒性以及巨噬細胞移行抑制因子的釋出。重要地是順鉑刺激可活化肝醣合成酶激酶3伴隨著巨噬細胞移行抑制因子的釋出以及肝醣合成酶激酶3調控腎毒性與腎發炎。考量於肝醣合成酶激酶3對順鉑媒介抗癌活性的重要性,在以順鉑為基的抗癌模式下,抑制巨噬細胞移行抑制因子有效地減緩急性腎臟損傷的發生並且無損於順鉑的抗癌活性。本研究結果不只闡明肝醣合成酶激酶3調控之腎毒性與巨噬細胞移行抑制因子調控之腎發炎分子機制並且提供一個治療策略透過抑制細胞毒性相關的巨噬細胞移行抑制因子進而減緩順鉑誘導急性腎臟損傷。
英文摘要 Anticancer agent cisplatin causes acute kidney injury (AKI) following renal inflammation and nephrotoxicity including renal cell apoptosis and acute tubular necrosis. In this study, we investigated a novel role of glycogen synthase kinase (GSK)-3-facilitated nephrotoxicity followed by macrophage migration inhibitory factor (MIF)-mediated renal inflammation in cisplatin AKI. Pharmacologically inhibiting MIF abated cisplatin AKI in vivo; however, MIF expression was not required for cisplatin-induced tubular cell apoptosis in vitro. Immunohistochemistry showed a specific renal expression of MIF in cortical tubular cells and cisplatin caused MIF decrease from these cells. Accompanied by cisplatin nephrotoxicity in vivo and in vitro, cortical tubular cell MIF was lost and/or secreted from intracellular to extracellular sites. In vitro studies showed that activation of caspases, induction of DNA damage responses, and signaling pathways of epidermal growth factor receptor/Src/protein kinase C-δ/reactive oxygen species/p38 mitogen-activated proten kinase/c-Jun N-terminal kinase were all regulated for cisplatin cytotoxicity as well as MIF secretion. Notably, cisplatin activated GSK-3 followed by MIF secretion and induced GSK-3-regulated nephrotoxicity and renal inflammation. Once GSK-3 was also required for cisplatin-induced anticancer, as demonstrated in a cisplatin-based anticancer model, inhibiting MIF prevented AKI without interference on anticancer efficacy. These results not only prove the molecular mechanisms for GSK-3-regulated nephrotoxicity and MIF-regulated renal inflammation but also confer a therapeutic strategy by inhibiting cytotoxicity-associated MIF to ameliorate cisplatin AKI.
論文目次 Abstract in Chinese II
Abstract in English III
Contents VIII
Chapter 1 Introduction 1
1-1. Cisplatin 1
1-2. Cisplatin-induced Nephrotoxicity 1
1-3. Pathophysiological events in cisplatin-induced nephrotoxicity 2
1-4. Macrophage migration inhibitory factor (MIF) 3
1-5. MIF in kidney disease 3
1-6. MIF and inflammation 4
1-7. MIF and Tumorigenesis 4
1-8. Glycogen synthase kinase-3 (GSK-3) 5
1-9. GSK3β in kidney disease 6
Chapter 2 Objective and Specific aims 7
2-1 Objective 7
2-2 Specific Aims 7
2-3 Experimental flowchart: 8
Chapter 3 Materials and Methods 9
3-1. Animal treatment 9
3-2. Computer-assisted quantification of immunohistological information 9
3-3. Immunohistochemical staing 10
3-4. Histology 10
3-5. Apoptosis Assay 11
3-6. Serological Examination 11
3-7. Cell Culture 11
3-8. Cytotoxicity 12
3-9. Enzyme-linked Immunosorbent assay (ELISA) 12
3-10. Reagent 12
3-11. Analysis of cell apoptosis 13
3-12. Immunostaing 13
3-13. Western blotting analysis 13
3-14. ROS Detection 14
3-15. Lentiviral-based shRNA transfection 14
3-16. Immune cell infiltration 15
3-17. Tumor Model 15
3-18. Statistical analysis 16
Chapter 4 Results 17
4-1 Pharmacologically inhibiting MIF attenuates cisplatin AKI 17
4-2 Expression of MIF in mouse tissues and organs 17
4-3 MIF is highly expressed in cortical tubules 18
4-4 Cisplatin causes cytotoxicity accompanied by MIF loss in vivo and in vitro 18
4-5 Caspase signaling determines MIF secretion 20
4-6 Cisplatin induces MIF secretion through DNA damage responses 20
4-7 Cisplatin induces MIF secretion following EGFR/Src/PKC-δ activation 21
4-8 Activation of p38 MAPK and JNK by ROS is required for cisplatin cytotoxicity and MIF secretion 21
4-9 GSK-3 mediates cisplatin-induced MIF secretion and AKI 22
4-10 Cisplatin induces GSK-3 activation and apoptosis in head and neck cancer cells 23
4-11 Inhibiting MIF abates cisplatin-induced AKI without inhibition on the therapeutic effects in human head and neck tumor xenografts 24
Chapter 5 Discussion 25
Chapter 6 Conclusion and Implication 30
Chapter 7 References 31
Chapter 8 Figure and Figure Legends 38
Appendix 55
A. Materials 55
A-1 Chemicals 55
A-2 Antibodies 58
A-3 Kits 59
A-4 Consumables 59
A-5 Apparatus 60
B. Methods 61
B-1 Cell culture 61
B-2 Western blot 63
B-3 Lentiviral-based shRNA knockdown 66
B-4 PI staining 68

參考文獻 Al-Abed, Y., and VanPatten, S. (2011). MIF as a disease target: ISO-1 as a proof-of-concept therapeutic. Future medicinal chemistry 3, 45-63.
Arany, I., Megyesi, J.K., Kaneto, H., Price, P.M., and Safirstein, R.L. (2004). Cisplatin-induced cell death is EGFR/src/ERK signaling dependent in mouse proximal tubule cells. American journal of physiology Renal physiology 287, F543-549.

Bao, H., Ge, Y., Zhuang, S., Dworkin, L.D., Liu, Z., and Gong, R. (2012). Inhibition of glycogen synthase kinase-3beta prevents NSAID-induced acute kidney injury. Kidney international 81, 662-673.
Baugh, J.A., and Bucala, R. (2002). Macrophage migration inhibitory factor. Critical care medicine 30, S27-S35.

Baumann, R., Casaulta, C., Simon, D., Conus, S., Yousefi, S., and Simon, H.U. (2003). Macrophage migration inhibitory factor delays apoptosis in neutrophils by inhibiting the mitochondria-dependent death pathway. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 17, 2221-2230.

Bijur, G.N., De Sarno, P., and Jope, R.S. (2000). Glycogen synthase kinase-3beta facilitates staurosporine- and heat shock-induced apoptosis. Protection by lithium. The Journal of biological chemistry 275, 7583-7590.

Brown, F.G., Nikolic-Paterson, D.J., Chadban, S.J., Dowling, J., Jose, M., Metz, C.N., Bucala, R., and Atkins, R.C. (2001). Urine macrophage migration inhibitory factor concentrations as a diagnostic tool in human renal allograft rejection. Transplantation 71, 1777-1783.

Brown, F.G., Nikolic-Paterson, D.J., Hill, P.A., Isbel, N.M., Dowling, J., Metz, C.M., and Atkins, R.C. (2002). Urine macrophage migration inhibitory factor reflects the severity of renal injury in human glomerulonephritis. Journal of the American Society of Nephrology : JASN 13 Suppl 1, S7-13.

Calandra, T., and Roger, T. (2003). Macrophage migration inhibitory factor: a regulator of innate immunity. Nature reviews Immunology 3, 791-800.
Cornelison, T.L., and Reed, E. (1993). Nephrotoxicity and hydration management for cisplatin, carboplatin, and ormaplatin. Gynecologic oncology 50, 147-158.
Damico, R.L., Chesley, A., Johnston, L., Bind, E.P., Amaro, E., Nijmeh, J., Karakas, B., Welsh, L., Pearse, D.B., Garcia, J.G., et al. (2008). Macrophage migration inhibitory factor governs endothelial cell sensitivity to LPS-induced apoptosis. American journal of respiratory cell and molecular biology 39, 77-85.

Denz, A., Pilarsky, C., Muth, D., Ruckert, F., Saeger, H.D., and Grutzmann, R. (2010). Inhibition of MIF leads to cell cycle arrest and apoptosis in pancreatic cancer cells. The Journal of surgical research 160, 29-34.

Dhanantwari, P., Nadaraj, S., Kenessey, A., Chowdhury, D., Al-Abed, Y., Miller, E.J., and Ojamaa, K. (2008). Macrophage migration inhibitory factor induces cardiomyocyte apoptosis. Biochemical and biophysical research communications 371, 298-303.

Dugo, L., Collin, M., Allen, D.A., Patel, N.S., Bauer, I., Mervaala, E.M., Louhelainen, M., Foster, S.J., Yaqoob, M.M., and Thiemermann, C. (2005). GSK-3beta inhibitors attenuate the organ injury/dysfunction caused by endotoxemia in the rat. Critical care medicine 33, 1903-1912.

Embi, N., Rylatt, D.B., and Cohen, P. (1980). Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. European journal of biochemistry / FEBS 107, 519-527.

Faubel, S., Ljubanovic, D., Reznikov, L., Somerset, H., Dinarello, C.A., and Edelstein, C.L. (2004). Caspase-1-deficient mice are protected against cisplatin-induced apoptosis and acute tubular necrosis. Kidney international 66, 2202-2213.

Frame, S., and Cohen, P. (2001). GSK3 takes centre stage more than 20 years after its discovery. The Biochemical journal 359, 1-16.

Francescato, H.D., Costa, R.S., da Silva, C.G., and Coimbra, T.M. (2009). Treatment with a p38 MAPK inhibitor attenuates cisplatin nephrotoxicity starting after the beginning of renal damage. Life sciences 84, 590-597.

Gong, R., Ge, Y., Chen, S., Liang, E., Esparza, A., Sabo, E., Yango, A., Gohh, R., Rifai, A., and Dworkin, L.D. (2008). Glycogen synthase kinase 3beta: a novel marker and modulator of inflammatory injury in chronic renal allograft disease. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 8, 1852-1863.

Hetman, M., Cavanaugh, J.E., Kimelman, D., and Xia, Z. (2000). Role of glycogen synthase kinase-3beta in neuronal apoptosis induced by trophic withdrawal. The Journal of neuroscience : the official journal of the Society for Neuroscience 20, 2567-2574.

Hudson, J.D., Shoaibi, M.A., Maestro, R., Carnero, A., Hannon, G.J., and Beach, D.H. (1999). A proinflammatory cytokine inhibits p53 tumor suppressor activity. The Journal of experimental medicine 190, 1375-1382.

He, X.X., Chen, K., Yang, J., Li, X.Y., Gan, H.Y., Liu, C.Y., Coleman, T.R., and Al-Abed, Y. (2009). Macrophage migration inhibitory factor promotes colorectal cancer. Mol Med 15, 1-10.

King, T.D., Bijur, G.N., and Jope, R.S. (2001). Caspase-3 activation induced by inhibition of mitochondrial complex I is facilitated by glycogen synthase kinase-3beta and attenuated by lithium. Brain research 919, 106-114.

Lan, H.Y., Yang, N., Metz, C., Mu, W., Song, Q., Nikolic-Paterson, D.J., Bacher, M., Bucala, R., and Atkins, R.C. (1997). TNF-alpha up-regulates renal MIF expression in rat crescentic glomerulonephritis. Mol Med 3, 136-144.

Lan, H.Y. (2008). Role of macrophage migration inhibition factor in kidney disease. Nephron Experimental nephrology 109, e79-83.

Leng, L., Metz, C.N., Fang, Y., Xu, J., Donnelly, S., Baugh, J., Delohery, T., Chen, Y., Mitchell, R.A., and Bucala, R. (2003). MIF signal transduction initiated by binding to CD74. The Journal of experimental medicine 197, 1467-1476.

Loberg, R.D., Vesely, E., and Brosius, F.C., 3rd (2002). Enhanced glycogen synthase kinase-3beta activity mediates hypoxia-induced apoptosis of vascular smooth muscle cells and is prevented by glucose transport and metabolism. The Journal of biological chemistry 277, 41667-41673.

Lue, H., Kleemann, R., Calandra, T., Roger, T., and Bernhagen, J. (2002). Macrophage migration inhibitory factor (MIF): mechanisms of action and role in disease. Microbes and infection / Institut Pasteur 4, 449-460.

Lue, H., Thiele, M., Franz, J., Dahl, E., Speckgens, S., Leng, L., Fingerle-Rowson, G., Bucala, R., Luscher, B., and Bernhagen, J. (2007). Macrophage migration inhibitory factor (MIF) promotes cell survival by activation of the Akt pathway and role for CSN5/JAB1 in the control of autocrine MIF activity. Oncogene 26, 5046-5059.

Miyazaki, J., and Kawai, K. (2003). [Prevention and management of nephrotoxicity from anti-cancer agents]. Nihon rinsho Japanese journal of clinical medicine 61, 973-977.

Luo, J., Tsuji, T., Yasuda, H., Sun, Y., Fujigaki, Y., and Hishida, A. (2008). The molecular mechanisms of the attenuation of cisplatin-induced acute renal failure by N-acetylcysteine in rats. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 23, 2198-2205.

Matsumoto, K., Maruyama, N., Maruyama, T., Ohnishi, Y., Nonaka, S., Inoshita, A., Ito, K., Kitajima, S., Abe, M., Satomura, A., et al. (2005). Elevated macrophage migration inhibitory factor (MIF) levels in the urine of patients with focal glomerular sclerosis. Clinical and experimental immunology 139, 338-347.

Meyer-Siegler, K.L., Iczkowski, K.A., and Vera, P.L. (2006). Macrophage migration inhibitory factor is increased in the urine of patients with urinary tract infection: macrophage migration inhibitory factor-protein complexes in human urine. The Journal of urology 175, 1523-1528.

Murch, O., Abdelrahman, M., Collino, M., Gallicchio, M., Benetti, E., Mazzon, E., Fantozzi, R., Cuzzocrea, S., and Thiemermann, C. (2008). Sphingosylphosphorylcholine reduces the organ injury/dysfunction and inflammation caused by endotoxemia in the rat. Critical care medicine 36, 550-559.

Nguyen, M.T., Lue, H., Kleemann, R., Thiele, M., Tolle, G., Finkelmeier, D., Wagner, E., Braun, A., and Bernhagen, J. (2003). The cytokine macrophage migration inhibitory factor reduces pro-oxidative stress-induced apoptosis. Journal of immunology (Baltimore, Md : 1950) 170, 3337-3347.

Obligado, S.H., Ibraghimov-Beskrovnaya, O., Zuk, A., Meijer, L., and Nelson, P.J. (2008). CDK/GSK-3 inhibitors as therapeutic agents for parenchymal renal diseases. Kidney international 73, 684-690.

Ogawa, H., Nishihira, J., Sato, Y., Kondo, M., Takahashi, N., Oshima, T., and Todo, S. (2000). An antibody for macrophage migration inhibitory factor suppresses tumour growth and inhibits tumour-associated angiogenesis. Cytokine 12, 309-314.

Otukesh, H., Chalian, M., Hoseini, R., Chalian, H., Hooman, N., Bedayat, A., Yazdi, R.S., Sabaghi, S., and Mahdavi, S. (2007). Urine macrophage migration inhibitory factor in pediatric systemic lupus erythematosus. Clinical rheumatology 26, 2105-2107.

Pabla, N., and Dong, Z. (2008). Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney international 73, 994-1007.

Pabla, N., and Dong, Z. (2012). Curtailing side effects in chemotherapy: a tale of PKCdelta in cisplatin treatment. Oncotarget 3, 107-111.

Pabla, N., Huang, S., Mi, Q.S., Daniel, R., and Dong, Z. (2008). ATR-Chk2 signaling in p53 activation and DNA damage response during cisplatin-induced apoptosis. The Journal of biological chemistry 283, 6572-6583.

Rashed, L.A., Hashem, R.M., and Soliman, H.M. (2011). Oxytocin inhibits NADPH oxidase and P38 MAPK in cisplatin-induced nephrotoxicity. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 65, 474-480.

Park, H.J., Kim, H.J., Bae, G.S., Seo, S.W., Kim, D.Y., Jung, W.S., Kim, M.S., Song, M.Y., Kim, E.K., Kwon, K.B., et al. (2009). Selective GSK-3beta inhibitors attenuate the cisplatin-induced cytotoxicity of auditory cells. Hearing research 257, 53-62.

Payen, D., Lukaszewicz, A.C., Legrand, M., Gayat, E., Faivre, V., Megarbane, B., Azoulay, E., Fieux, F., Charron, D., Loiseau, P., et al. (2012). A Multicentre Study of Acute Kidney Injury in Severe Sepsis and Septic Shock: Association with Inflammatory Phenotype and HLA Genotype. PloS one 7, e35838.

Perazella, M.A., and Moeckel, G.W. (2010). Nephrotoxicity from chemotherapeutic agents: clinical manifestations, pathobiology, and prevention/therapy. Seminars in nephrology 30, 570-581.

Ramesh, G., and Reeves, W.B. (2003). TNFR2-mediated apoptosis and necrosis in cisplatin-induced acute renal failure. American journal of physiology Renal physiology 285, F610-618.

Rashed, L.A., Hashem, R.M., and Soliman, H.M. (2011). Oxytocin inhibits NADPH oxidase and P38 MAPK in cisplatin-induced nephrotoxicity. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 65, 474-480.

Ries, F., and Klastersky, J. (1986). Nephrotoxicity induced by cancer chemotherapy with special emphasis on cisplatin toxicity. American journal of kidney diseases : the official journal of the National Kidney Foundation 8, 368-379.

Sanchez-Gonzalez, P.D., Lopez-Hernandez, F.J., Lopez-Novoa, J.M., and Morales, A.I. (2011). An integrative view of the pathophysiological events leading to cisplatin nephrotoxicity. Critical reviews in toxicology 41, 803-821.

Sanchez-Nino, M.D., Sanz, A.B., Ihalmo, P., Lassila, M., Holthofer, H., Mezzano, S., Aros, C., Groop, P.H., Saleem, M.A., Mathieson, P.W., et al. (2009). The MIF receptor CD74 in diabetic podocyte injury. Journal of the American Society of Nephrology : JASN 20, 353-362.

Sancho-Martinez, S.M., Piedrafita, F.J., Cannata-Andia, J.B., Lopez-Novoa, J.M., and Lopez-Hernandez, F.J. (2011). Necrotic concentrations of cisplatin activate the apoptotic machinery but inhibit effector caspases and interfere with the execution of apoptosis. Toxicological sciences : an official journal of the Society of Toxicology 122, 73-85.

Shi, X., Leng, L., Wang, T., Wang, W., Du, X., Li, J., McDonald, C., Chen, Z., Murphy, J.W., Lolis, E., et al. (2006). CD44 is the signaling component of the macrophage migration inhibitory factor-CD74 receptor complex. Immunity 25, 595-606.

Summers, S.A., Chan, J., Gan, P.Y., Dewage, L., Nozaki, Y., Steinmetz, O.M., Nikolic-Paterson, D.J., Kitching, A.R., and Holdsworth, S.R. (2011). Mast cells mediate acute kidney injury through the production of TNF. Journal of the American Society of Nephrology : JASN 22, 2226-2236.

Taguchi, T., Nazneen, A., Abid, M.R., and Razzaque, M.S. (2005). Cisplatin-associated nephrotoxicity and pathological events. Contributions to nephrology 148, 107-121.

Wang, D., and Lippard, S.J. (2005). Cellular processing of platinum anticancer drugs. Nature reviews Drug discovery 4, 307-320.

Wang, J., Pabla, N., Wang, C.Y., Wang, W., Schoenlein, P.V., and Dong, Z. (2006). Caspase-mediated cleavage of ATM during cisplatin-induced tubular cell apoptosis: inactivation of its kinase activity toward p53. American journal of physiology Renal physiology 291, F1300-1307.

Wang, Y., Huang, W.C., Wang, C.Y., Tsai, C.C., Chen, C.L., Chang, Y.T., Kai, J.I., and Lin, C.F. (2009). Inhibiting glycogen synthase kinase-3 reduces endotoxaemic acute renal failure by down-regulating inflammation and renal cell apoptosis. British journal of pharmacology 157, 1004-1013.

Wang, Z., Havasi, A., Gall, J., Bonegio, R., Li, Z., Mao, H., Schwartz, J.H., and Borkan, S.C. (2010). GSK3beta promotes apoptosis after renal ischemic injury. Journal of the American Society of Nephrology : JASN 21, 284-294.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-17起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-08-17起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw