進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-3101201900290600
論文名稱(中文) 應用擴散功能性磁振造影於酸味覺刺激實驗之研究
論文名稱(英文) Application of Diffusion Functional Magnetic Resonance Imaging to Study Response of Sour Gustatory Simulation
校院名稱 成功大學
系所名稱(中) 資訊工程學系
系所名稱(英) Institute of Computer Science and Information Engineering
學年度 107
學期 1
出版年 108
研究生(中文) 劉耀文
研究生(英文) Yao-Wen Liou
學號 P76041035
學位類別 碩士
語文別 英文
論文頁數 50頁
口試委員 指導教授-吳明龍
口試委員-趙梓程
口試委員-鍾孝文
中文關鍵字 擴散功能性磁振造影  表觀擴散係數  耳下腺  延腦 
英文關鍵字 DfMRI  ADC  parotid glands  medulla oblongata 
學科別分類
中文摘要 擴散功能性磁振造影(Diffusion functional magnetic resonance imaging, DfMRI) 能觀測人體中水分子的運動,反映出各組織之間水分子交換的功能情況,提供一個具有潛力的研究方法。然而,擴散功能性磁振造影應用在酸味覺刺激反應上的變化仍在起步階段。對於表觀擴散係數(apparent diffusion coefficient, ADC)的變化趨勢,根據各研究者所使用的刺激物與實驗方式結果上不一致。
本研究的目標是將探討人體對於味覺刺激的反應過程,以檸檬汁對受試者在實驗中進行刺激,觀察唾腺中主要組織之一的耳下腺,以及味覺中樞延腦,藉由時間解析度觀察在擴散性磁振造影的訊號變化。並且在正常受試者上歸納出感興趣區域(region of Interest, ROI)在刺激後時間曲線上的趨勢。
英文摘要 Diffusion functional magnetic resonance imaging (DfMRI) is a potential approach for probing the motion of water molecule to reflect the function of the interchange between tissues. However, applying DfMRI to study the response of gustatory stimulation is still in the early stage. The trend of apparent diffusion coefficient (ADC) is inconsistent depending on the given stimulation and imaging methods.
Our aim is to explore the response process to the gustatory stimulation in the human. We inject the lemon juice during the experiments to investigate response of the parotid glands and the medulla oblongata. Then, we evaluate the effect of temporal resolution for observing signal changes in diffusion MRI. Finally, we generalize the trend of time curve in the ROI among the healthy subjects.
論文目次 摘要 i
Abstract ii
誌謝 iii
Table of Contents iv
List of Figures vi
List of Tables vii
Chapter 1 Introduction 1
1.1 Motivation
 1
1.2 Background and Related Works 3
1.2.1 Diffusion Weighted Imaging 3
1.2.2 Functional Magnetic Resonance Imaging 4
1.2.3 Diffusion Functional Magnetic Resonance Imaging 6
Chapter 2 Materials and Methods 7
2.1 Data Acquisition 7
2.2 Experimental Procedures 9
2.2.1 Arrangement of Equipment 9
2.2.2 DfMRI Sessions 10
2.2.3 Paradigm 13
2.3 Imaging Processing and Quantitative Analysis 14
2.3.1 Slice Timing Correction 14
2.3.2 Signal Filtering 15
2.3.3 Evaluated Parameters 17
2.4 Statistical Analysis 19
Chapter 3 Result 20
3.1 Signal Intensity-Time Curve of Selective ROI 20
3.2 Statistical Analysis 25
3.3 Image Quality 31
Chapter 4 Discussion and Conclusion 33
4.1 Effect of Slice and Phase Encoding 33
4.2 Type of Stimulus 36
4.3 Effect of Repetition Time 37
4.4 Signal Averaging 39
4.5 Conclusion and Future Work 42
Reference 44
參考文獻 1. Sergi, G., et al., Taste loss in the elderly: Possible implications for dietary habits. Crit Rev Food Sci Nutr, 2017. 57(17): p. 3684-3689.
2. Ogawa, S., et al., Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences, 1990. 87(24): p. 9868-9872.
3. Ogawa, H., et al., Functional MRI detection of activation in the primary gustatory cortices in humans. Chem Senses, 2005. 30(7): p. 583-92.
4. Spetter, M.S., et al., Representation of sweet and salty taste intensity in the brain. Chem Senses, 2010. 35(9): p. 831-40.
5. Deng, G., et al., Functional magnetic resonance imaging (fMRI) changes and saliva production associated with acupuncture at LI-2 acupuncture point: a randomized controlled study. BMC Complement Altern Med, 2008. 8: p. 37.
6. Song, A.W., et al., Diffusion weighted fMRI at 1.5 T. Magn Reson Med, 1996. 35(2): p. 155-8.
7. Le Bihan, D., et al., Direct and fast detection of neuronal activation in the human brain with diffusion MRI. Proc Natl Acad Sci U S A, 2006. 103(21): p. 8263-8.
8. Ellingson, B.M., et al., Validation of functional diffusion maps (fDMs) as a biomarker for human glioma cellularity. J Magn Reson Imaging, 2010. 31(3): p. 538-48.
9. Moffat, B.A., et al., Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci U S A, 2005. 102(15): p. 5524-9.
10. Matsushima, N., et al., Apparent diffusion coefficients of benign and malignant salivary gland tumors. Comparison to histopathological findings. J Neuroradiol, 2007. 34(3): p. 183-9.
11. Karaman, Y., et al., Role of diffusion-weighted magnetic resonance imaging in the differentiation of parotid gland tumors. Oral Radiology, 2016. 32(1): p. 22-32.
12. Li, M., et al., Evaluation of salivary gland scintigraphy, magnetic resonance and diffusion-weighted imaging in clinical diagnosis of Sjgrens Syndrome. African Journal of Microbiology Research, 2010. 4(9): p. 722-729.
13. Ding, C., et al., Diffusion-weighted MRI findings in Sjögren’s syndrome: a preliminary study. Acta Radiologica, 2016. 57(6): p. 691-700.
14. Zhang, Y., et al., Diffusion-weighted MR imaging of salivary glands with gustatory stimulation: comparison before and after radiotherapy. Acta Radiol, 2013. 54(8): p. 928-33.
15. Thoeny, H.C., et al., Gustatory stimulation changes the apparent diffusion coefficient of salivary glands: initial experience. Radiology, 2005. 235(2): p. 629-634.
16. Regier, M., et al., Sjogren's syndrome of the parotid gland: value of diffusion-weighted echo-planar MRI for diagnosis at an early stage based on MR sialography grading in comparison with healthy volunteers. Rofo, 2009. 181(3): p. 242-8.
17. Habermann, C.R., et al., Diffusion-Weighted Echo-Planar MR Imaging of Primary Parotid Gland Tumors: Is a Prediction of Different Histologic Subtypes Possible? American Journal of Neuroradiology, 2009. 30(3): p. 591-596.
18. Habermann, C.R., et al., Functional imaging of parotid glands: diffusion-weighted echo-planar MRI before and after stimulation. Rofo, 2004. 176(10): p. 1385-9.
19. Habermann, C.R., et al., Monitoring of gustatory stimulation of salivary glands by diffusion-weighted MR imaging: comparison of 1.5T and 3T. AJNR Am J Neuroradiol, 2007. 28(8): p. 1547-51.
20. Ries, T., et al., Value of apparent diffusion coefficient calculation before and after gustatory stimulation in the diagnosis of acute or chronic parotitis. Eur Radiol, 2008. 18(10): p. 2251-7.
21. Kato, H., et al., Salivary gland function evaluated by diffusion-weighted MR imaging with gustatory stimulation: preliminary results. J Magn Reson Imaging, 2011. 34(4): p. 904-9.
22. Le Bihan, D., et al., Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology, 1988. 168(2): p. 497-505.
23. Mori, S. and P.B. Barker, Diffusion magnetic resonance imaging: its principle and applications. The Anatomical Record, 1999. 257(3): p. 102-109.
24. Sumi, M., et al., Diffusion-Weighted Echoplanar MR Imaging of the Salivary Glands. American Journal of Roentgenology, 2002. 178(4): p. 959-965.
25. Hu, X. and E. Yacoub, The story of the initial dip in fMRI. NeuroImage, 2012. 62(2): p. 1103-1108.
26. Kornak, J., D. Hall, and M. Haggard, Spatially Extended fMRI Signal Response to Stimulus in Non-Functionally Relevant Regions of the Human Brain: Preliminary Results. Vol. 5. 2011. 24-32.
27. Huettel, S.A., A.W. Song, and G. McCarthy, Functional Magnetic Resonance Imaging. 2014: Sinauer.
28. Cohen, M.S. and S.Y. Bookheimer, Localization of brain function using magnetic resonance imaging. Trends Neurosci, 1994. 17(7): p. 268-77.
29. M Muñoz-Cespedes, J., et al., Functional Neuroimaging Studies of Cognitive Recovery After Acquired Brain Damage in Adults. Vol. 15. 2005. 169-83.
30. Poldrack, R.A., The role of fMRI in Cognitive Neuroscience: where do we stand? Current Opinion in Neurobiology, 2008. 18(2): p. 223-227.
31. Ochsner, K.N., et al., Rethinking Feelings: An fMRI Study of the Cognitive Regulation of Emotion. 2002. 14(8): p. 1215-1229.
32. Orringer, D.A., D.R. Vago, and A.J. Golby, Clinical applications and future directions of functional MRI. Seminars in neurology, 2012. 32(4): p. 466-475.
33. Mansfield, P., Multi-planar image formation using NMR spin echoes. Journal of Physics C: Solid State Physics, 1977. 10(3): p. L55.
34. Simon-Zoula, S.C., et al., Functional imaging of the parotid glands using blood oxygenation level dependent (BOLD)-MRI at 1.5T and 3T. J Magn Reson Imaging, 2008. 27(1): p. 43-8.
35. Topolovec, J.C., et al., Human cardiovascular and gustatory brainstem sites observed by functional magnetic resonance imaging. J Comp Neurol, 2004. 471(4): p. 446-61.
36. Veldhuizen, M.G., D.R. Gitelman, and D.M. Small, An fMRI Study of the Interactions Between the Attention and the Gustatory Networks. Chemosensory perception, 2012. 5(1): p. 117-127.
37. Nicolas, R., et al., Comparison of BOLD, diffusion-weighted fMRI and ADC-fMRI for stimulation of the primary visual system with a block paradigm. Magnetic Resonance Imaging, 2017. 39: p. 123-131.
38. Miller, K.L., et al., Evidence for a vascular contribution to diffusion FMRI at high b value. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(52): p. 20967-20972.
39. Glover, G.H., Overview of functional magnetic resonance imaging. Neurosurg Clin N Am, 2011. 22(2): p. 133-9, vii.
40. Le Bihan, D. and M. Iima, Diffusion Magnetic Resonance Imaging: What Water Tells Us about Biological Tissues. PLOS Biology, 2015. 13(7): p. e1002203.
41. Le Bihan, D., Diffusion, confusion and functional MRI. Neuroimage, 2012. 62(2): p. 1131-6.
42. Le Bihan, D., Diffusion MRI: what water tells us about the brain. EMBO molecular medicine, 2014. 6(5): p. 569-573.
43. Darquié, A., et al., Transient decrease in water diffusion observed in human occipital cortex during visual stimulation. Proceedings of the National Academy of Sciences, 2001. 98(16): p. 9391.
44. Bammer, R., et al., Diffusion tensor imaging using single-shot SENSE-EPI. Magn Reson Med, 2002. 48(1): p. 128-36.
45. Blaimer, M., et al., SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method. Top Magn Reson Imaging, 2004. 15(4): p. 223-36.
46. Chiu, T.-W., et al., Evaluating Instantaneous Perfusion Responses of Parotid Glands to Gustatory Stimulation Using High-Temporal-Resolution Echo-Planar Diffusion-Weighted Imaging. 2016. 37(10): p. 1909-1915.
47. Deshmane, A., et al., Parallel MR imaging. 2012. 36(1): p. 55-72.
48. Dirix, P., et al., Diffusion-weighted magnetic resonance imaging to evaluate major salivary gland function before and after radiotherapy. Int J Radiat Oncol Biol Phys, 2008. 71(5): p. 1365-71.
49. Percival, R.S., S.J. Challacombe, and P.D. Marsh, Flow rates of resting whole and stimulated parotid saliva in relation to age and gender. J Dent Res, 1994. 73(8): p. 1416-20.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-02-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-02-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw