進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-3101201800480800
論文名稱(中文) 應用於白光發光二極體之磷酸系LiBaPO4: Re (Re= Tm3+, Tb3+, Tb3+/ Ce3+) 螢光材料之研究
論文名稱(英文) Research on LiBaPO4: Re (Re= Tm3+, Tb3+, Tb3+/ Ce3+) phosphate based phosphors applied in white light LED
校院名稱 成功大學
系所名稱(中) 微電子工程研究所
系所名稱(英) Institute of Microelectronics
學年度 106
學期 1
出版年 107
研究生(中文) 賴炫霖
研究生(英文) Hsuan-Lin Lai
學號 Q18021129
學位類別 博士
語文別 英文
論文頁數 70頁
口試委員 指導教授-張守進
共同指導教授-楊茹媛
召集委員-林建德
口試委員-陳英忠
口試委員-管鴻
口試委員-楊素華
口試委員-閔庭輝
口試委員-姬梁文
口試委員-翁敏航
中文關鍵字 螢光粉  磷酸  熱穩定性  微波  燒結  增感劑 
英文關鍵字 phosphor  phosphate  thermal stability  microwave  sintering  sensitizer 
學科別分類
中文摘要 在本論文中,我們選用LiBaPO4做為主體晶格。並摻雜Tm3+、Tb3+及Tb3+, Ce3+以製備藍光及綠光螢光粉。
在摻雜Tm3+部分,利用傳統高溫爐製備螢光粉,並討論其微結構及發光特性。為了做比較,另外利用微波輔助燒結法以相同的燒結條件製備螢光粉。結果顯示,利用微波輔助燒結法製備之螢光粉可得到結晶性較佳,粉體分散性較佳及發光強度較佳的螢光粉。
在摻雜Tb3+部分,利用傳統高溫爐製備螢光粉,並討論其微結構及發光特性。
為了做比較,另外添加Ce3+增感劑以相同的燒結條件製備螢光粉。結果顯示,添加Ce3+增感劑的螢光粉其最佳激發波段,可由中紫外光調整至近紫外光波段。
針對Tb3+, Ce3+共摻雜螢光粉,我們額外探討其熱穩定性並與市售YAG: Ce螢光粉比較。由分析結果可知,Tb3+, Ce3+共摻雜螢光粉其熱穩定性優於市售YAG: Ce螢光粉,應可應用於高功率白光LED。
英文摘要 In this dissertation, we choose LiBaPO4 as host. And doped with Tm3+, Tb3+ and Tb3+ , Ce3+ ions to synthesis blue and green phosphors.
In the part of doped Tm3+, the phosphors was prepared by conventional furnace, and its microstructure and photoluminescent properties were discussed. In addition, the microwave-assisted sintering method was used to prepare the phosphors under the same sintering conditions. The results show that the phosphors prepared by the microwave- assisted method can be used to obtain with better crystallinity , better phospor dispersion and better photoluminescence intensity.
In the part of doped Tb3+, the phosphors was prepared by conventional furnace, and its microstructure and photoluminescent properties were discussed. For the purpose of comparison, additional Ce3+ sensitizer was used to prepare the phosphors under the same sintering conditions. The results show that the best excitation band of the phosphor adding Ce3+ sensitizer can be adjusted from the medium ultraviolet to the near ultraviolet band.
For Tb3+, Ce3+ co-doped phosphor, we additionally investigate its thermal stability and compare it with commercial YAG: Ce. From the analysis results, Tb3+, Ce3+ co-doped phosphor is better than the commercial YAG: Ce, should be applied to high-power WLED.
論文目次 摘要 I
Abstract II
誌謝 III
Contents IV
Table Captions VI
Figure Captions VII
Chapter 1 Introduction 1
1.1 Brief introduction of phosphors 1
1.2 The structure of ABPO4 2
1.2.1 The structure of LiBaPO4 3
1.3 Motivation of this study 3
Reference 5
Chapter 2 Basic Theory 12
2.1 Fluorescence and phosphorescence 12
2.1.1 Luminescence property of the rare earth elements 13
2.2 Properties of phosphors 14
2.2.1 Concentration quenching effect 14
2.2.2 Thermal quenching effect 14
2.2.3 Poisoning 14
2.3 Microwave-assisted sintering method 15
Reference 18
Chapter 3 Experimental procedures 24
3.1 Experiment materials 24
3.2 Experiment procedures 24
3.2.1 Fabrication of LiBaPO4: Tm3+ phosphors by conventional furnance 25
3.2.2 Fabrication of LiBaPO4: Tm3+ phosphors by microwave-assisted sintering 25
3.2.3 Fabrication of LiBaPO4: Tb3+ phosphors by conventional furnance 25
3.2.4 Fabrication of LiBaPO4: Tb3+, Ce3+ phosphors by conventional furnance 26
3.3 Measurement system 26
3.3.1 X-ray diffraction 26
3.3.2 Scanning Electron Microscope 26
3.3.3 Photoluminescence 27
Reference 28
Chapter 4 Results and discussion 31
4.1 Preparation of LiBaPO4: Tm3+ phosphor and its properties 31
4.1.1 Effects of Tm3+ concentration 31
4.1.2 Effects of sintering methods 33
4.2 Preparation of LiBaPO4: Tb3+, Ce3+ phosphor and its properties 36
4.2.1 Effects of Tb3+ concentration 36
4.2.2 Effects of Ce3+ co-doped sensitized 39
Reference 45
Chapter 5 Conclusions and Future Works 65
5.1 Conclusions 65
5.2 Future works 66
Vita 67
Publish List 68

Table Captions
Chapter 1 Introduction 1
Table 1-1 The comparison of various types of lighting equipment. 8
Table 1-2 The research status of ABPO4 structure phosphors. 9

Figure Captions
Chapter 1 Introduction 1
Fig. 1-1 Approaches of WLEDs. 10
Fig. 1-2 Energy transfer diagram of the phosphor. 10
Fig. 1-3 Overall cost of WLEDs. 11
Fig. 1-4 Crystal structure of LiBaPO4. 11
Chapter 2 Basic Theory 12
Fig. 2-1 Molecule energy level diagram for a PL system: (1) light absorption; (2) vibrational relaxation; (3) internal conversion; (4) internal conversion or external conversion; (5) radiative transition; and (6) non-radiative transitions. 19
Fig. 2-2 Energy transformed diagram of excitation energy. 19
Fig. 2-3 Diagram of 4f level transition. (For example: Eu3+). 20
Fig. 2-4 Diagram of the concentration quenching effect. 20
Fig. 2-5 Thermal quenching in the configurational Mordlnate model. 21
Fig. 2-6 Diagram of the poisoning phenomenon. 21
Fig. 2-7 The diagrams of conventional furnace and microwave furnace. 22
Fig. 2-8 The schematic diagram of the molecular movements in the electric field. 22
Fig. 2-9 Frequency dependence of the polarization mechanisms in dielectrics. 23
Chapter 3 Experimental procedures 24
Fig. 3-1 X-ray Powder Diffractometer (from Institute of Materials Engineering, National Pingtung University of Science and Technology). 29
Fig. 3-2 Scanning electron microscope (from National Pingtung University of Science and Technology). 29
Fig. 3-3 Spectrofluorimeter (from National Nano Device Laboratories). 30
Chapter 4 Results and discussion 31
Fig. 4-1 (a) X-ray diffraction patterns of LiBa1-xPO4: xTm3+ phosphors with different concentrations of Tm3+ ions; (b) SEM image of LiBa0.985PO4: 0.015Tm3+ phosphor. 48
Fig. 4-2 Emission spectra of LiBa1-xPO4: xTm3+ phosphors with different concentrations of Tm3+ ions (λex= 359 nm). The inset on the right top is the tendency of the blue emission intensity (454nm) for LiBa1-xPO4:xTm3+ at 0 < x ≤ 0.03. 49
Fig. 4-3 The curve of log (I/x) vs. log (x) in LiBa1-xPO4: xTm3+ phosphors with doped Tm3+ concentration at x= 0.02, 0.025, 0.03. 49
Fig. 4-4 The CIE1931 chromaticity diagram of LiBa1-xPO4: xTm3+ phosphors (x= 0.01, 0.015, 0.02, 0.025, 0.03). 50
Fig. 4-5 X-ray diffraction patterns X-ray diffraction patterns of LiBa0.985PO4: 0.015Tm3+ compared by sintered at 1200°C for 3 h in different furnace. 50
Fig. 4-6 (a) SEM image of LiBa0.985PO4: 0.015Tm3+ phosphor sintered at 1200 °C for 3 h in microwave furnace; (b) SEM image of LiBa0.985PO4: 0.015Tm3+ phosphor sintered at 1200 °C for 3 h in conventional furnace. 51
Fig. 4-7 (a) Emission spectra of LiBa1−xPO4: xTm3+ phosphors with different concentrations of Tm3+ ions sintered at 1200 °C for 3 h in microwave furnace (λex= 359 nm). The inset on the top right is the tendency of the blue emission intensity (454 nm) for LiBa1−xPO4: xTm3+ at 0.005 < x ≤ 0.030; (b) Emission spectra of LiBa1−xPO4: xTm3+ phosphors with different concentrations of Tm3+ ions sintered at 1200 °C for 3 h in convemtional furnace (λex= 359 nm). The inset on the top right is the tendency of the blue emission intensity (454 nm) for LiBa1−xPO4: xTm3+ at 0.010 < x ≤ 0.030. 52
Fig. 4-8 The emission spectra of LiBa0.985PO4: 0.015Tm3+ phosphors with different sintering process. 53
Fig. 4-9 The curve of log (I/x) vs. log (x) in LiBa1−xPO4: xTm3+ phosphors with doped Tm3+ concentration at x= 0.02, 0.025, 0.03 using different sintering process. 53
Fig. 4-10 The CIE1931 chromaticity diagram of LiBa0.985PO4: 0.015Tm3+ phosphors using different sintering process. 54
Fig. 4-11 (a) X-ray diffraction patterns of LiBa1-xPO4: xTb3+ phosphors with different concentrations of Tb3+ ions prepared by solid state reaction; (b) SEM image of LiBa0.8PO4: 0.2Tb3+ phosphor prepared by solid state reaction. 55
Fig. 4-12 Emission spectrum of LiBa1-xPO4: xTb3+ phosphors with different concentrations of Tb3+ ions prepared by solid state reaction. (λex= 370 nm) 56
Fig. 4-13 The curve of log (I/x) vs. log (x) in LiBa1-xPO4: xTb3+ phosphors with different concentrations of Tb3+ ions prepared by solid state reaction. 56
Fig. 4-14 The CIE1931 chromaticity diagram of LiBa1-xPO4: xTb3+ phosphors with different concentrations of Tb3+ ions prepared by solid state reaction. 57
Fig. 4-15 Fluorescence decay time of 542 nm emission for LiBa0.8PO4: 0.2Tb3+phosphor prepared by solid state reaction. 57
Fig. 4-16 X-ray diffraction patterns of LiBa1-x-yPO4: xTb3+, yCe3+ phosphors with different concentrations of Tb3+ and Ce3+ ions. 58
Fig. 4-17 Excitation and emission spectra of the LiBa0.95PO4: 0.05Ce3+ phosphor. 59
Fig. 4-18 Excitation and emission spectra of the LiBa0.8PO4: 0.2Tb3+ phosphor. 59
Fig. 4-19 Excitation spectra and emission spectra of the LiBa0.75PO4: 0.2Tb3+, 0.05Ce3+ phosphor. The inset shows the excitation spectra of the LiBa0.95PO4: 0.05Ce3+ 60
Fig. 4-20 Schematic for the energy transfer from Ce3+ to Tb3+. 60
Fig. 4-21 Emission spectra of LiBa1-0.2-yPO4: 0.2Tb3+, yCe3+ phosphors with different concentrations of Ce3+ ions (λex= 306 nm). 61
Fig. 4-22 The decay curves of the Tb3+ emission at 550 nm in LiBaPO4: 0.2Tb3+, yCe3+, under excitation at 306 nm. The inset shows the dependence of the respective lifetime of Tb3+ on Ce3+ concentration (y) in LiBaPO4: 0.2Tb3+, yCe3+. 61
Fig. 4-23 The curve of log (I/x+y) vs. log (x+y) in LiBa1-x-yPO4: xTb3+, yCe3+ phosphors with doped Tb3+ and Ce3+ concentration at x= 0.2, y= 0.05, 0.07, 0.09, 0.11. 62
Fig. 4-24 The CIE1931 chromaticity diagram of LiBa0.5PO4: 0.2Tb3+, 0.05Ce3+ phosphors. The table shows the CIE1931 chromaticity of the LiBa1-x-yPO4: xTb3+, yCe3+. 62
Fig. 4-25 Temperature-dependent PL spectra of LiBa0.75PO4: 0.2Tb3+, 0.05Ce3+. 63
Fig. 4-26 Temperature-dependent luminescence emission intensity of the LiBa0.75PO4: 0.2Tb3+, 0.05Ce3+ excited at 306 nm, monitored at 550 nm and commercial YAG: Ce3+ excited at 450 nm, monitored at 583 nm measured at temperatures from room temperature to 623.15K. 63
Fig. 4-27 Activation energies of the thermal quenching of LiBa0.75PO4: 0.2Tb3+, 0.05Ce3+ phosphor. 64
Fig. 4-28 Activation energies of the thermal quenching of Commercial YAG phosphor. 64

參考文獻 Chapter 1
[1] D. K. Yim, H. J. Song, I. S. Cho, J. S. Kim, K. S. Hong, A novel blue-emitting NaSrPO4: Eu2+ phosphor for near UV based white light-emitting-diodes, Mater. Lett. 65, 1666 (2011).
[2] J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M.Tsai, G. C. Chi, R. K. Wu, White light emission from near UV InGaN/GaN LED chip precoated with blue/green/red phosphors, IEEE Photonics Technol. Lett. 15, 18 (2003).
[3] 陳皇宇,微波輔助燒結製備應用於白光 LED 之紅光及綠光螢光粉,博士論文,國立成功大學,2013。
[4] Fred Schubert, Light-Emitting Diodes, The press syndicate of the university of Cambridge, UK, 2003.
[5] Skoog, Holler, Nieman, Principles of Instrumental analysis, fifth edition, Saunders college Publishing, 1992.
[6] 楊茹媛、彭昱銘、蘇炎坤,白光LED用之螢光粉材料之基本原理與技術發展,電子月刊,197期,第140-157頁,2011。
[7] 陳建良,不同活化劑摻雜對 KSrPO4 主體晶格之微結構與光學性質之研究,碩士論文,國立屏東科技大學,2013
[8] Y. Chen, J. Wang, X. Zhang, G. Zhang, M. Gong, Q. Su, An intense green emitting LiSrPO4: Eu2+, Tb3+ for phosphor-converted LED, Sens. Actuators, B 148, 259 (2010).
[9] E. Radkov, R. Bompiedi, A. M. Srivastava, A. A. Setlur, C. Becker, White light with UV LEDs, Proc. SPIE 2004 5187, 171 (2004).
[10] J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, Emission color variation of M2SiO4: Eu2+ (M= Ba, Sr, Ca) phosphors for light-emitting diode, Solid State Commun. 133, 187 (2005).
[11] S. Kubota, H. Hara, H. Yamane, M. Shimada, Luminescent property of Eu3+ in a new compound, (Sr0.99La1.01)Zn0.99O3.495, J. Electrochem. Soc. 149, H68 (2002).
[12] S. Kubota, R. L. Stanger, Y. Suzuyama, H. Yamane, M. Shimada, Luminescent properties of Eu3+ in defect apatite, Sr3La6(SiO4)6, J. Electrochem. Soc. 149, H134 (2002).
[13] K. Tadatomo, H. Okagawa, Y. Ohuchi, Tsunekawa, T. Jyouichi, Y. Imada, M. Kato, H. Kudo, T. Taguchi, High output power InGaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic Vapor Phase Epitaxy, Phys. Status Solidi A 188, 121 (2001).
[14] K. Srinivasu, R. S. Ningthoujam, V. Sudarsan, R. K. Vatsa, A. K. Tyagi, P. Srinivasu, A. Vinu, Eu3+ and Dy3+ doped YPO4 nanoparticles: Low temperature synthesis and luminescence studies, J. Nanoscience Nanotechnology 9, 3034 (2009).
[15] Z. Yang, G. Yang, S. Wang, J. Tian, X. Li, Q. Guo, G. Fu, A novel green-emitting phosphor NaCaPO4:Eu2+ for white LEDs, Mater. Lett. 62, 1884 (2008).
[16] C. C. Lin, R. S. Liu, Y. S. Tang, S. F. Hu, Full-Color and thermally stable KSrPO4:Ln, Ln= Eu, Tb, Sm phosphors for white- light-emitting diodes, J. Electrochem. Soc. 155, J248 (2008).
[17] Y. J. Park, Y. J. Kim, Blue emission properties of Eu-doped CaAl2O4 phosphors synthesized by a flux method, Mater. Sci. Eng. B 146, 84 (2008).
[18] W. Yuhu, W. Zhilong, Characterization of Y2O2S: Eu3+, Mg2+, Ti4+ Long-lasting phosphor synthesized by flux method, J. Rare Earths 24, 25 (2006).
[19] S. Zhang, W. Zhuang, C. Zhao, Influence of flux on properties of Y3Al5O12: Ce phosphor, J. Chin. Rare Earth Soc. 20, 605 (2002).
[20] L. Ma, J. Hu, G. Wan, Effect of flux on YAG: Ce phosphors prepared by solid-state reactions, Chin. J. Lumin. 27, 348 (2006).
[21] A. Nag, T. R. N. Kutty, Role of B2O3 on the phase stability and long phosphorescence of SrAl2O4 : Eu, Dy, J. Alloys Compd. 354, 221 (2003).
[22] Y. K. Su, Y. M. Peng, R. Y. Yang, J. L. Chen, Effects of NaCl flux on microstructure and luminescent characteristics of KSrPO4:Eu2+ phosphors, opt. mater. 34, 1598 (2012).
[23] Y. M. Peng, Y. K. Su, R. Y. Yang, The charge transfer transition phenomenon and microstructure of Eu3+-doped NaCaPO4 phosphors sintered with flux via solid-state reaction, Mater. Res. Bull. 48, 1946 (2013).
[24] R. Y. Yang, Y. M. Peng, Y. K. Su, Novel red emitting microwave-assisted sintered LiSrPO4: Eu3+ phosphors for application in near-UV WLEDs, IEEE J. Electronic Mater. 42, 2910 (2013).
[25] R. Y. Yang, Y. M. Peng, H. L. Lai C. J. Chu, B. Chiou, Y. K. Su, Effect of the different concentrations of Eu3+ ions on the microstructure and photoluminescent properties of Zn2SiO4:xEu3+ phosphors and synthesized with TEOS solution as silicate source, Opt. Mater. 35, 1719 (2013).
[26] Y. M. Peng, Y. K. Su, R. Y. Yang, Improving Thermal Stability of KSrPO4:Tb3+ phosphors Prepared by microwave assisted sintering, Opt. Mater. 35, 2102 (2013).
[27] A. K. Gulnar, V. Sudarsan, R. K. Vatsa, C. Hubli, U. K. Gautam, A. Vinu, A. K. Tyagi, CePO4:Ln (Ln) Tb3+ and Dy3+) nanoleaves incorporated in silica sols, Crystal Growth & Design 9, 2451 (2009).
[28] K. Gulnar, V. Sudarsan, R. K. Vatsa, T. Sakuntala, A. K. Tyagi, U. K. Gautam, A. Vinu, Nucleation sequence on the cation exchange process between Y0.95Eu0.05PO4 and CePO4 nanorods, Nanoscale 2, 2847 (2010).
[29] 賴炫霖,以固態反應法製備LiBaPO4:Re3+ (Re3+: Pr3+, Ce3+)螢光粉之微結構與發光特性之研究,碩士論文,國立屏東科技大學,2013。
[30] 彭昱銘,應用於白光發光二極體之磷酸系 ABPO4 (A= Li, Na, K; B= Ca, Sr, Ba)下轉換螢光材料之研究,博士論文,國立成功大學,2013。
[31] 陳坤賢,應用於白光發光二極體之磷酸系NaSrPO4: Re (Re= Tb3+, Sm3+, Tb3+ / Ce3+)螢光材料之研究,博士論文,國立中山大學,2016。
[32] H. L. Lai, M. H. Weng, R. Y. Yang, S. J. Chang, Enhanced Photoluminescent Properties and Crystalline Morphology of LiBaPO4: Tm3+ Phosphor through Microwave Sintering Method, Materials 9.5, 356 (2016).
[33] H. L. Lai, R. Y. Yang, S. J. Chang, Thermally Stable Luminescence Properties and Energy Transfer of Green-emitting LiBaPO4: Tb3+, Ce3+ Phosphor, Ceram. Int. 43.1, S688 (2017).
[34] R. Y. Yang, Y. M. Peng, H. L. Lai, Y. K. Su S. J. Chang, The optimum sintering condition for KSrPO4: Eu3+ phosphors applied in WLEDs, Ceram. Int. 43.1, S682 (2017).

Chapter 2
[1] Skoog, Holler, N ieman, Principles of Instrumental analysis, fifth edition, Saunders college Publishing, 1992.
[2] 陳皇宇,微波輔助燒結製備應用於白光 LED 之紅光及綠光螢光粉,博士論文,國立成功大學,2013。
[3] M. N. Rahaman, Sintering technology, New York: Marcel Dekker, 1990.
[4] 楊茹媛、彭昱銘、蘇炎坤,白光 LED 用之螢光粉材料之基本原理與技術發展, 電子月刊,197 期,第 140-157 頁,2011。
[5] 彭昱銘, 應用於白光發光二極體之磷酸系ABPO4 (A= Li, Na, K; B= Ca, Sr, Ba)下轉換螢光材料之研究,博士論文,國立成功大學,2013。
[6] J. A. DeLuca, An introduction to luminescence in inorganic solids, J. Chem. Educ. 57, 541 (1980).
[7] Y. M. Peng, Y. K. Su, R. Y. Yang, Improving Thermal Stability of KSrPO4:Tb3+ phosphors Prepared by microwave assisted sintering, Opt. Mater. 35, 2102 (2013).
[8] 陳坤賢,應用於白光發光二極體之磷酸系NaSrPO4: Re (Re= Tb3+, Sm3+, Tb3+ / Ce3+)螢光材料之研究,博士論文,國立中山大學,2016。
[9] H. L. Lai, M. H. Weng, R. Y. Yang, S. J. Chang, Enhanced Photoluminescent Properties and Crystalline Morphology of LiBaPO4: Tm3+ Phosphor through Microwave Sintering Method, Materials 9.5, 356 (2016).

Chapter 3
[1] H. L. Lai, R. Y. Yang, M. H. Weng, S. J. Chang, Novel blue-emitting LiBaPO4: Tm3+ phosphor for solid-state lighting The 2nd International Conference on Engineering and Natural Science 342 (2015).
[2] P. D. Ramash, D. Brandom, L. Schachter, Use of Partially Oxidized SiC Particle Bed for Microwave Sintering of Low Loss Ceramics, Mater. Sci. Eng. A 266, 211 (1999).
[3] M. H. Weng, R. Y. Yang, Y. M. Peng, J. L. Chen, Yellowish green-emitting KSrPO4: Tb3+ phosphors with various doping concentrations prepared by using microwave assisted sintering, Ceram. Int. 38, 1319 (2012).
[4] H. L. Lai, M. H. Weng, R. Y. Yang, S. J. Chang, Enhanced Photoluminescent Properties and Crystalline Morphology of LiBaPO4: Tm3+ Phosphor through Microwave Sintering Method, Materials 9.5, 356 (2016).
[5] R. Y. Yang, H. L. Lai, Y. M. Peng, S. J. Chang, Energy transfer mechanisms in green emitting LiBaPO4: Tb3+ phosphors, International Conference on Optical Particle Characterization 92320Z (2014).
[6] H. L. Lai, R. Y. Yang, S. J. Chang, Thermally Stable Luminescence Properties and Energy Transfer of Green-emitting LiBaPO4: Tb3+, Ce3+ Phosphor, Ceram. Int. 43.1, S688 (2017).
[7] 陳皇宇,微波輔助燒結製備應用於白光 LED 之紅光及綠光螢光粉,博士論文,國立成功大學,2013。
[8] 彭昱銘,應用於白光發光二極體之磷酸系 ABPO4 (A= Li, Na, K; B= Ca, Sr, Ba)下轉換螢光材料之研究,博士論文,國立成功大學,2013。
[9] 陳坤賢,應用於白光發光二極體之磷酸系NaSrPO4: Re (Re= Tb3+, Sm3+, Tb3+ / Ce3+)螢光材料之研究,博士論文,國立中山大學,2016。

Chapter 4
[1] H. L. Lai, R. Y. Yang, M. H. Weng, S. J. Chang, Novel blue-emitting LiBaPO4: Tm3+ phosphor for solid-state lighting The 2nd International Conference on Engineering and Natural Science 342 (2015).
[2] Y. Z. Li, Y. H. Wang, Z. F. Wang, Z. Y. Zhang, UV–VUV-excited photoluminescence of Tm3+ substituted β-rhenanite as a blue-emitting phosphor, J. Lumin. 130, 1225 (2010).
[3] J. Sun, X. Zhang, Z. Xia, H. Du, Luminescent properties of LiBaPO4: RE (RE = Eu2+, Tb3+, Sm3+) phosphors for white light-emitting diodes, J. appl. Physics 111, 013101 (2012).
[4] L. G. Van Uitert, Characterization of energy transfer interactions between rare earth ions, J. Electrochem. Soc. 114, 1048 (1967).
[5] L. Ozawa, P. M. Jaffe, The mechanism of the emission color shift with activator concentration in +3 activated phosphors, J. Electrochem. Soc. 118, 1678 (1971).
[6] D. L. Dexter, A theory of sensitized luminescence in solids, J. Chem. Phys. 21, 836 (1953).
[7] H. L. Lai, M. H. Weng, R. Y. Yang, S. J. Chang, Enhanced Photoluminescent Properties and Crystalline Morphology of LiBaPO4: Tm3+ Phosphor through Microwave Sintering Method, Materials 9.5, 356 (2016).
[8] M. H. Weng, R. Y. Yang, Y. M. Peng, J. L. Chen, Yellowish green-emitting KSrPO4: Tb3+ phosphors with various doping concentrations prepared by using microwave assisted sintering, Ceram. Int. 38, 1319 (2012).
[9] R. Y. Yang, H.Y. Chen, C.M. Hsiung, S.J. Chang, Crystalline morphology and photoluminescent properties of YInGe2O7: Eu3+ phosphors prepared from microwave and conventional sintering, Ceram. Int. 37, 749 (2011).
[10] H. Y. Chen, R. Y. Yang, S. J. Chang, Improving crystalline morphology and photoluminescent properties of BaY2ZnO5: Eu3+ phosphors prepared using microwave assisted sintering, Mater. Lett. 64, 2548 (2010).
[11] H. Y. Chen, R. Y. Yang, S. J. Chang, Y. K. Yang, Microstructure and photoluminescent properties of Sr2SiO4: Eu3+ phosphors with various NH4Cl flux concentrations, Mater. Res. Bull. 47, 1412 (2012).
[12] R. Y. Yang, H. L. Lai, Microstructure, and luminescence properties of LiBaPO4: Dy3+ phosphors with various Dy3+ concentrations prepared by microwave assisted sintering, J. Lumin. 145, 49 (2014).
[13] R. Y. Yang, H. L. Lai, Y. M. Peng, S. J. Chang, Energy transfer mechanisms in green emitting LiBaPO4: Tb3+ phosphors, International Conference on Optical Particle Characterization 92320Z (2014).
[14] Q. Z. Wang, J. Tian, X. H. Yang, X. Gao, Luminescence and energy transmission of Tb3+, Dy3+ activated LaBO3, J. Chin. Lumin. 16, 57 (1995).
[15] C. H. Park, S. J. Park, B. Y. Yu, H. S. Bae, C. H. Kim, C. H. Pyun, G. Y., Hong, VUV excitation of Y3Al5O12: Tb phosphor prepared by a sol-gel process, J. Mater. Sci. Lett. 19, 335 (2000)
[16] H. L. Lai, R. Y. Yang, S. J. Chang, Thermally Stable Luminescence Properties and Energy Transfer of Green-emitting LiBaPO4: Tb3+, Ce3+ Phosphor, Ceram. Int. 43.1, S688 (2017).
[17] H. Yang, Y. S. Kim, Energy transfer-based spectral properties of Tb-, Pr-, or Sm-codoped YAG: Ce nanocrystalline phosphors, J. Lumin. 128, 1570 (2008).
[18] J. Zhong, H. Liang, Q. Su, P. Dorenbos, M. D. Birowosuto, Luminescence of NaGd (PO3)4: Ce3+ and its potential application as a scintillator material, Chem. Phys. Lett. 445, 32 (2007).
[19] W. T. Carnall, P. R. Fields, K. Rajnak, Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+, J. Phys. Chem. 49, 4412 (1968).
[20] H. Yang, C. Li, Y. Tao, J. Xu, G. Zhang, Q. Su, The luminescence of CaYBO4: RE3+ (RE= Eu, Gd, Tb, Ce) in VUV–visible region, J. Lumin. 126, 196 (2007).
[21] Y. Yang, A. Bao, H. Lai, Y. Tao, H. Yang, Luminescent properties of SrAl2B2O7: Ce3+, Tb3+, J. Phys. Chem. Solids. 70, 1317 (2009).
[22] G. Li, D. Geng, M. Shang, Y. Zhang, C. Peng, Z. Cheng, J. Lin, Color tuning luminescence of Ce3+ / Mn2+ / Tb3+-triactivated Mg2Y8(SiO4)6O2 via energy transfer: potential single-phase white-light-emitting phosphors, J. Phys. Chem. C. 115, 21882 (2011).
[23] C. Zhang, C. Li, C. Peng, R. Chai, S. Huang, D. Yang, Z. Cheng, J. Lin, Facile and controllable synthesis of monodisperse CaF2 and CaF2: Ce3+ / Tb3+ hollow spheres as efficient luminescent materials and smart drug carriers, Chem. Eur. J. 16, 5672 (2010)
[24] M. Yu, J. Lin, J. Fu, H. J. Zhang, Y. C. Han, Sol–gel synthesis and photoluminescent properties of LaPO4: A (A= Eu3+, Ce3+, Tb3+) nanocrystalline thin films, J. Mater. Chem. 13, 1413 (2003).
[25] C. Shulan, Synthesis and Luminescence of Zn4B6O13: Ce3+, Tb3+, J. Chinese Rare Earth Soc. 20, 222 (2003).
[26] J. Sun, X. Zhang, Z. Xia, H. Du, Luminescent properties and energy transfer of Ce3+, Tb3+ co-doped NaBaPO4 phosphor, J. Electrochem. Soc. 158, J368 (2011).
[27] C. Ouyang, M. A. Shuai, R. A. O. Yang, X. Zhou, X. Zhou, Y. Li, ZnPO4: Tb3+, Ce3+ green phosphors with high efficiency, J. Rare Earths 30, 637 (2012).
[28] R. T. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A 32, 751 (1976).
[29] R. Cao, D. Peng, H. Xu, S. Jiang, T. Fu, W. Luo, Tunable emission, energy transfer and charge compensation in Sr3(VO4)2: Sm3+, P5+, Na+ phosphor, Spectrochim Acta A Mol Biomol Spectrosc. 150, 465 (2015).
[30] P. Dorenbos, 5d-level energies of Ce3+ Fluoride I. and the crystalline environment. compounds, Phys. Rev. B Condens. Matter Mater. Phys. 62, 15640 (2000).
[31] P. Dorenbos, The 5d level positions of the trivalent lanthanides in inorganic compounds, J. Lumin. 91, 155 (2000).
[32] S. Zhang, Y. Nakai, T. Tsuboi, Y. Huang, H. J. Seo, The thermal stabilities of luminescence and microstructures of Eu2+-doped KBaPO4 and NaSrPO4 with β-K2SO4 type structure, Inorg. Chem. 50, 2897 (2011).
[33] C. C. Lin, R. S. Liu, Y. S. Tang, S. F. Hu, Full-Color and thermally stable KSrPO4: Ln, Ln= Eu, Tb, Sm phosphors for white- light-emitting diodes, J. Electrochem. Soc. 155, J248 (2008).
[34] C. C. Lin, Y. S. Tang, S. F. Hu, R. S. Liu, KBaPO4: Ln (Ln= Eu, Tb, Sm) phosphors for UV excitable white light-emitting diodes, J. Lumin. 129, 1682 (2009).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-01-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-01-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw