 |
系統識別號 |
U0026-3101201315163000 |
論文名稱(中文) |
一類混沌系統有限時間同步之研究 |
論文名稱(英文) |
Study on Finite-time Synchronization of a class of
Chaotic Systems |
校院名稱 |
成功大學 |
系所名稱(中) |
工程科學系碩博士班 |
系所名稱(英) |
Department of Engineering Science |
學年度 |
101 |
學期 |
1 |
出版年 |
102 |
研究生(中文) |
萬兆麟 |
研究生(英文) |
Zhang-Lin Wan |
學號 |
N98961064 |
學位類別 |
博士 |
語文別 |
英文 |
論文頁數 |
64頁 |
口試委員 |
指導教授-廖德祿 口試委員-顏錦柱 口試委員-連長華 口試委員-姚賀騰 口試委員-林瑞昇
|
中文關鍵字 |
混沌系統
有限時間同步
伊藤公式
李亞普諾夫穩定性理論
適應性控制器
時間切換機制
滑動控制器
|
英文關鍵字 |
chaotic systems
finite-time synchronization
Ito formula
Lyapunov stability theory
adaptive control
time-driven switching law
sliding-mode control
|
學科別分類 |
|
中文摘要 |
本論文針對一類混沌系統作探討,利用伊藤公式和李亞普夫穩定性理論進行有限時間同步問題之研究。首先,針對利用高木菅野(Takagi-Sugeno, T-S)模糊定理建構而成的具時間延遲混沌系統探討其穩定性,利用平行分散補償概念與李亞普諾夫穩定性理論,在其加入所設計的適應性控制器和適合的參數適應性更新機制,進行漸近同步與參數識別之研究。緊接著,對於具時間切換機制的隨機蔡氏電路進行部份有限時間同步相關之研究。其次,利用適當的切換面與滑動控制器之設計,確保其主-僕時間切換隨機蔡氏電路的混沌同步和其誤差狀態的期望值為部份有限時間穩定。再者,在上述的研究基礎上,針對伴隨著時間切換機制的隨機羅斯勒混沌系統進行完整的有限時間同步之研究。在主要反饋控制器加入情況下,主-僕時間切換隨機羅斯勒混沌系統能達到有限時間同步而其誤差狀態的期望值也能達到有限時間穩定。最後,利用電腦模擬結果驗證於本論文中所提之定理的有效性與正確性。
|
英文摘要 |
In this dissertation, the problems of finite-time synchronization of a class of chaotic systems are investigated by using the Ito formula and Lyapunov stability theory. Firstly, the adaptive synchronization problem of general time-delayed chaotic systems which is represented by Takagi-Sugeno (T-S) fuzzy model is considered. Based on parallel distributed compensation (PDC) scheme and Lyapunov stability theorem, an adaptive controller and corresponding parameters update laws are proposed to asymptotically synchronize the master-slave chaotic systems and achieve the parameters identification. Secondly, the partial finite-time synchronization between switched stochastic Chua’s circuits accompanied by a time-driven switching law is considered. By selecting an appropriate switching surface, the purposed sliding-mode controller (SMC) is developed to guarantee the synchronization of switched stochastic master-slave Chua’s circuits and obtain the partial finite-time stability for the mean of error states. Finally, based on the above study, the full finite-time synchronization between switched stochastic Rössler chaotic systems accompanied by a time-driven switching law is presented. The finite-time synchronization of switched stochastic master-slave Rössler chaotic systems and the finite-time stability for the mean of error states are investigated with the proposed feedback controller. Some illustrative examples are given to demonstrate the effectiveness and correctness of the purposed theorems.
|
論文目次 |
中文摘要...................................................I
Abstract.................................................II
Acknowledgements........................................III
Table of Contents........................................IV
List of Figures..........................................VI
Nomenclature...........................................VIII
Chapter 1 Introduction....................................1
1.1 Motivation....................................1
1.2 Brief Sketch of the Contents..................4
Chapter 2 Mathematical Preliminaries......................8
Chapter 3 Adaptive synchronization of chaotic systems
via T–S fuzzy model..............................13
3.1. Formulation of Main Chaotic System .........13
3.2. Adaptive Controller and Update Laws Design..15
3.3. Numerical Simulation Results................18
Chapter 4 Partial Finite-time Synchronization of Switched
Stochastic Chua's Circuits.......................25
4.1. Formulation of Switched Stochastic Chua's
Circuits.........................................25
4.2. Sliding-Mode Controller Design..............28
4.3. Numerical Simulation Results................34
Chapter 5 Finite-time Synchronization of Switched
Stochastic Chaotic system........................39
5.1. Formulation of Switched Stochastic Rössler
Chaotic System...................................39
5.2. Finite-time Controller Design...............41
5.3 Numerical Simulation Results.................44
Chapter 6 Conclusions and Future Works...................49
6.1 Conclusion...................................49
6.2 Future Works.................................50
References...............................................52
|
參考文獻 |
[1] Lorenz, E. N. (1963), “Deterministic nonperiodic flow,” Journal of the Atmospheric Sciences, 20 (2) pp.130~141.
[2] Fortuna, L., M. Frasca & M. G. Xibilia (2009), Chua’s circuit implementations: yesterday, today and tomorrow, Singapore, World Scientific Publishing Company.
[3] Holmes, P. J. & D. A. Rand (1976), “The bifurcations of Duffing's equation: An application of catastrophe theory,” Journal of Sound and Vibration, 44 (2) pp.237~253.
[4] Rössler, O. E. (1976) “An equation for continuous chaos,” Physics Letter A, 57 (5) pp.397~398.
[5] Chen, G. & T. Ueta (1999), “Yet another chaotic attractor,” International Journal of Bifurcation and Chaos, 9 (7) pp.1465~1466.
[6] Hénon, M. (1976) “A two-dimensional mapping with a strange attractor,” Communications in Mathematical Physics, 50 (1) pp.69~77.
[7] Pecora, L. M. & T. L. Carroll (1990), “Synchronization in chaotic systems,” Physical Review Letters, 64 (8) pp.821~824.
[8] Ma, J., F. Li, L. Huang & W. Y. Jin (2011), “Complete synchronization, phase synchronization and parameters estimation in a realistic chaotic system,” Communications in Nonlinear Science and Numerical Simulation, 16 (9) pp.3770~3785.
[9] Taghvafard, H. & G. H. Erjaee (2011), “Phase and anti-phase synchronization of fractional order chaotic systems via active control,” Communications in Nonlinear Science and Numerical Simulation, 16 (10) pp.4079~4088.
[10] Guo, W. (2011) “Lag synchronization of complex networks via pinning control,” Nonlinear Analysis: Real World Applications, 12 (5) pp.2579~2585.
[11] Zhen, J. (2008) “Linear generalized synchronization of chaotic systems with uncertain parameters,” Journal of Systems Engineering and Electronics, 19 (4) pp.779~784.
[12] Chen, J., H. Liu, J. A. Lu & Q. Zhang (2011), “Projective and lag synchronization of a novel hyperchaotic system via impulsive control,” Communications in Nonlinear Science and Numerical Simulation, 16 (4) pp.2033~2040.
[13] Wang, C. & S. S. Ge (2001), “Synchronization of two uncertain chaotic systems via adaptive backstepping,” International Journal of Bifurcation and Chaos, 11 (6) pp.1743~1751.
[14] Albea, C., F. Gordillo & C. Canudas-de-Wit (2011), “Adaptive control design for a boost inverter,” Control Engineering Practice, 19 (1) pp.32~44.
[15] Wu, X., Z. H. Guan & Z. Wu (2008), “Adaptive synchronization between two different hyperchaotic systems,” Nonlinear Analysis: Theory, Methods & Applications, 68 (5) pp.1346~1351.
[16] Park, J. H. (2007) “Adaptive controller design for modified projective synchronization of Genesio–Tesi chaotic system with uncertain parameters,” Chaos, Solitons and Fractals, 34 (4) pp.1154~1159.
[17] Liu, X. & S. Zhong (2007), “T–S fuzzy model-based impulsive control of chaotic systems with exponential decay rate,” Physics Letters A, 370 (3-4) pp.260~264.
[18] Zhang, Y. & J. Sun (2005), “Controlling chaotic Lu systems using impulsive control,” Physics Letter A, 342 (3) pp.256~262.
[19] Sun, J. & Y. Zhang (2004), “Impulsive control and synchronization of Chua’s oscillators,” Mathematics and Computers in Simulation, 66 (6) pp.499~508.
[20] Rivadeneira, P. S. & C. H. Moog (2012), “Impulsive control of single-input nonlinear systems with application to HIV dynamics,” Applied Mathematics and Computation, 218 (17) pp.8462~8474.
[21] Daly, J. M. & D. W. L. Wang (2009), “Output feedback sliding mode control in the presence of unknown disturbances,” Systems & Control Letters, 58 (3) pp.188~193.
[22] Yau, H. T. (2008), “Chaos synchronization of two uncertain chaotic nonlinear gyros using fuzzy sliding mode control,” Mechanical Systems and Signal Processing, 22 (2) pp.408~418.
[23] Hosseinnia, S. H., R. Ghaderi, A. Ranjbar, N. M. Mahmoudian & S. Momani (2010), “Sliding mode synchronization of an uncertain fractional order chaotic system,” Computers & Mathematics with Applications, 59 (5) pp.1637~1643.
[24] Castaños, F. & L. Fridman (2011), “Dynamic switching surfaces for output sliding mode control: An approach,” Automatica, 47 (9) pp.1957~1961.
[25] Xiang, L. Y., Z. X. Liu, Z. Q. Chen, F. Chen & Z. Z. Yuan (2007), “Pinning control of complex dynamical networks with general topology,” Physica A: Statistical Mechanics and its Applications, 379 (1) pp.298~306.
[26] Wang, Z., L. Huang, Y. Wang & Y. Zuo (2010), “Synchronization analysis of networks with both delayed and non-delayed couplings via adaptive pinning control method,” Communications in Nonlinear Science and Numerical Simulation, 15 (12) pp.4202~4208.
[27] Wang, X. F. & G. Chen (2002), “Pinning control of scale-free dynamical networks,” Physica A: Statistical Mechanics and its Applications, 310 (11) pp.521~531.
[28] Chemachema, M. (2012), “Output feedback direct adaptive neural network control for uncertain SISO nonlinear systems using a fuzzy estimator of the control error,” Neural Networks, 36 pp.25~34.
[29] Ohno, H., T. Suzuki, K. Aoki, A. Takahasi & G. Sugimoto (1994), “Neural network control for automatic braking control system,” Neural Networks, 7 (8) pp.1303~1312.
[30] Gomi, H. & M. Kawato (1993), “Neural network control for a closed-loop System using Feedback-error-learning,” Neural Networks, 6 (7) pp.933~946.
[31] Li, H. Y. & Y. A. Hu (2011), “Robust sliding-mode backstepping design for synchronization control of cross-strict feedback hyperchaotic systems with unmatched uncertainties,” Communications in Nonlinear Science and Numerical Simulation, 16 (10) pp.3904~3913.
[32] Shi, H. (2011), “A novel scheme for the design of backstepping control for a class of nonlinear systems,” Applied Mathematical Modelling, 35 (4) pp.1893~1903.
[33] Wang, C. & S. S. Ge (2001), “Adaptive synchronization of uncertain chaotic systems via backstepping design”, Chaos Solitons and Fractals, 12 (7) pp.199~206.
[34] Wu, Z. J., X. J. Xie & S. Y. Zhang (2007), “Adaptive backstepping controller design using stochastic small-gain theorem,” Automatica, 43 (4) pp.608~620.
[35] Yan, J. J., J. S. Lin & T. L. Liao (2008), “Synchronization of a modified Chua’s circuit system via adaptive sliding mode control,” Chaos, Solitons and Fractals, 36 (1) pp.45~52.
[36] Yan, J. J., M. L. Hung & T. L. Liao (2006), “Adaptive sliding mode control for synchronization of chaotic gyros with fully unknown parameters,” Journal of Sound and Vibration, 298 (1-2) pp.298~306.
[37] Fei, J. & C. Batur (2009), “A novel adaptive sliding mode control with application to MEMS gyroscope,” ISA Transactions, 48 (1) pp.73~78.
[38] Chen, X. (2006) “Adaptive sliding mode control for discrete-time multi-input multi-output systems,” Automatica, 42 (3) pp.427~435.
[39] Li, C., X. Liao & K. W. Wong (2004), “Chaotic lag synchronization of coupled time-delayed systems and its applications in secure communication,” Physica D: Nonlinear Phenomena, 194 (3-4) pp.187~202.
[40] Moskalenko, O. I., A. A. Koronovskii & A. E. Hramov (2010), “Generalized synchronization of chaos for secure communication: Remarkable stability to noise,” Physics Letters A, 374 (29) pp.2925~2931.
[41] Yang, J. & F. Zhu (2013), “Synchronization for chaotic systems and chaos-based secure communications via both reduced-order and step-by-step sliding mode observers,” Communications in Nonlinear Science and Numerical Simulation, 18 (4) pp.926~937.
[42] Wang, X. & J. Zhang (2006), “Chaotic secure communication based on nonlinear autoregressive filter with changeable parameters,” Physics Letters A, 357 (4-5) pp.323~329.
[43] Liberzon, D. (2003), Switching in systems and control, Boston: Birkhauser.
[44] Daafouz, J., P. Riedinger & C. Iung (2002), “Stability analysis and control synthesis for switched systems: A switched Lyapunov function approach,” IEEE transactions on automatic control, 47 (11) pp.1883~1887.
[45] Sun, X. M., W. Wang, G. P. Liu & J. Zhao (2008), “Stability analysis for linear switched systems with time-varying delay,” IEEE transactions Systems, Man and Cybernetis, Part B, 38 (2) pp.528~533.
[46] Montagner, V. F., V. J. S. Leite, R.C.L.F. Oliveira & P. L. D. Peres (2006), “State feedback control of switched linear systems: An LMI approach,” Journal of Computational and Applied Mathematics, 194 (2) pp.192~206.
[47] Lin, H. & P. J. Antsaklis (2009), “Stability and stabilizability of switched linear systems: A survey of recent results,” IEEE transactions on automatic control, 54 (2) pp.308~322.
[48] Colaneri, P., J. C. Geromel & A. Astolfi (2008), “Stabilization of continuous-time switched nonlinear systems,” Systems & Control Letters, 57 (1) pp.95~103.
[49] Ahn, C. K. (2010), “An approach to stability analysis of switched Hopfield neural networks with time-delay,” Nonlinear Dynamics, 60 (4) pp.703~711.
[50] Liu, Y. & J. Zhao (2012), “Stabilization of switched nonlinear systems with passive and non-passive subsystems,” Nonlinear Dynamics, 67 (3) pp.1709~1716.
[51] Wan, Z. L., T. L. Liao, Y. Y. Hou & J. J. Yan (2012), “ synchronization of switched chaotic systems and its application to secure communications,” International Journal of Bifurcation and Chaos, 22 (3) pp.1250058 (13 pages).
[52] Yang, Y., J. Li & G. Chen (2009), “Finite-time stability and stabilization of nonlinear stochastic hybrid systems,” Journal of Mathematical Analysis and Applications, 356 (1) pp.338~345.
[53] Aghababa, M. P. & H. P. Aghababa (2011), “Adaptive finite-time stabilization of uncertain non-autonomous chaotic electromechanical gyrostat systems with unknown parameters,” Mechanics Research Communications, 38 (7) pp.500~505.
[54] Amato, F., R. Ambrosino, C. Cosentino & G. D. Tommasi (2011), “Finite-time stabilization of impulsive dynamical linear systems,” Nonlinear Analysis: Hybrid Systems, 5 (1) pp.89~101.
[55] Guo, R. (2012), “Finite-time stabilization of a class of chaotic systems via adaptive control method,” Communications in Nonlinear Science and Numerical Simulation, 17 (1) pp.255~262.
[56] Wan, Z. L., Y. Y. Hou, T. L. Liao & J. J. Yan (2011), “Partial finite-time synchronization of switched stochastic Chua's circuits via sliding-mode control,” Mathematical Problems in Engineering, 2011 Article ID 162490, 13 pages.
[57] Zou, A. M., K. D. Kumar, Z. G. Hou & X. Liu (2011), “Finite-time attitude tracking control for spacecraft using terminal sliding mode and Chebyshev neural network,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 41 (4) pp. 950~963.
[58] Tanaka, K. & M. Sugeno (1992), “Stability analysis and design of fuzzy control systems,” Fuzzy Sets and Systems, 45 (2) pp.135~136.
[59] Tanaka, K. & M. Sugeno (1985), “Fuzzy identification of systems and its applications to modeling and control,” IEEE Transactions on Systems, Man, and Cybernetics, 15 (1) pp.116~132.
[60] Ting, C. S. (2006), “Stability analysis and design of Takagi-Sugeno fuzzy systems,” Information Sciences, 176 (19) pp.2817~2845.
[61] Chen, B. & X. Liu (2005), “Delay-dependent robust control for T-S fuzzy systems with time delay,” IEEE Transactions on Fuzzy Systems, 13 (4) pp.544~556.
[62] Fang, C. H., Y. S. Liu, S. W. Kau, L. Hong & C. H. Lee (2006), “A new LMI-based approach to relaxed quadratic stabilization of T-S fuzzy control systems,” IEEE Transactions on Fuzzy Systems, 14 (3) pp.386~397.
[63] Lien, C. H. & K. W. Yu (2008), “Robust control for Takagi-Sugeno fuzzy systems with time-varying state and input delays,” Chaos, Solitons and Fractals, 35 (5) pp.1003~1008.
[64] Liu, X. & S. Zhong (2007), “T-S fuzzy model-based impulsive control of chaotic systems with exponential decay rate,” Physics Letters A, 370 (3-4) pp.260~264.
[65] He, M., W. J. Cai & S. Y. Li (2005), “Multiple fuzzy model-based temperature predictive control for HVAC systems,” Information Sciences, 169 (1-2) pp.155~174.
[66] Oliveira, J. B., A. D. Araujo & S. M. Dias (2010), “Controlling the speed of a three-phase induction motor using a simplified indirect adaptive sliding mode scheme,” Control Engineering Practice, 18 (6) pp.577~584.
[67] Hyun, C. H., C. W. Park & S. Kim (2010), “Takagi–Sugeno fuzzy model based indirect adaptive fuzzy observer and controller design,” Information Sciences, 180 (11) pp.2314~2327.
[68] Qi, R. & M. A. Brdys (2008), “Stable indirect adaptive control based on discrete-time T-S fuzzy model,” Fuzzy Sets and Systems, 159 (8) pp.900~925.
[69] Rong, H. J., S. Suresh & G. S. Zhao (2011), “Stable indirect adaptive neural controller for a class of nonlinear system,” Neurocomputing, 74 (16) pp.2582~2590.
[70] Su, H., Z. Rong, M. Z. Q. Chen, X. Wang, G. Chen & H. Wang (2012), “Distributed adaptive tracking control for synchronization of unknown networked Lagrangian systems,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, PP (99) pp.1~6.
[71] Yan, J. J., M. L. Hung, T. Y. Chiang & Y. S. Yang (2006), “Robust synchronization of chaotic systems via adaptive sliding mode control,” Physics Letters A, 356 (3) pp.220~225.
[72] Yang, C. C. (2010), “Adaptive control and synchronization of identical new chaotic flows with unknown parameters via single input,” Applied Mathematics and Computation, 216 (4) pp.1316~1324.
[73] Dadras, S. & H. R. Momeni (2010), “Adaptive Sliding Mode Control of Chaotic Dynamical Systems with Application to Synchronization,” Mathematics and Computers in Simulation, 80 (12) pp.2245~2257.
[74] Mirkin, B. M. & P. O. Gutman (2005), “Output feedback model reference adaptive control for multi-input–multi-output plants with state delay,” Systems and Control Letters, 54 (10) pp.961~972.
[75] Pourboghrat, F. & G. Vlastos (2002), “Model reference adaptive sliding control for linear systems,” Computers and Electrical Engineering, 28 (5) pp.361~374.
[76] Gu, H., T. Zhang & Q. Shen (2006), “Decentralized model reference adaptive sliding mode control based on fuzzy model,” Journal of Systems Engineering and Electronics, 17 (1) pp.182~186, 192.
[77] Li, J. L. & X. J. Xie (2007), “Discrete-time direct model reference adaptive control: A systematic approach,” Acta Automatica Sinica, 33 (10) pp.1048~1052.
[78] Yang, Q., Y. Xue, S. X. Yang & W. Yang (2012), “An auto-tuning method for dominant-pole placement using implicit model reference adaptive control technique,” Journal of Process Control, 22 (3) pp.519~526.
[79] Yu, H., J. Wang, B. Deng, X. Wei, Y. Che, Y. K. Wong, W. L. Chan & K. M. Tsang, “Adaptive backstepping sliding mode control for chaos synchronization of two coupled neurons in the external electrical stimulation,” Communications in Nonlinear Science and Numerical Simulation, 17 (3) pp.1344~1354.
[80] Maganti, G. B. & S. N. Singh (2006), “Output feedback form of Chua’s circuit and modular adaptive control of chaos using single measurement,” Chaos, Solitons and Fractals, 28 (3) pp.724~738.
[81] Yau, H. T. & C. L. Chen (2007), “Chaos control of Lorenz systems using adaptive controller with input saturation,” Chaos, Solitons and Fractals, 34 (5) pp.1567~1574.
[82] Lazzouni, S. A., S. Bowong, F. M. M. Kakmeni & B. Cherki (2007), “An adaptive feedback control for chaos synchronization of nonlinear systems with different order,” Communications in Nonlinear Science and Numerical Simulation, 12 (4) pp.568~583.
[83] Lin, W. (2008), “Adaptive chaos control and synchronization in only locally Lipschitz systems,” Physics Letters A, 372 (18) pp.3195~3200.
[84] Huang, L., X. Mao & F. Deng (2008), “Stability of hybrid stochastic retarded systems,” Circuits and Systems I: Regular Papers, IEEE Transactions on, 55 (11) pp.3413~3420.
[85] Mao, X. (2002) “A note on the LaSalle-type theorems for stochastic differential delay equations,” Journal of Mathematical Analysis and Applications, 268 (1) pp.125~142.
[86] Li, W., H. Su & K. Wang (2011), “Global stability analysis for stochastic coupled systems on networks,” Automatica, 47 (1) pp.215~220.
[87] Chen, B. S. & W. Zhang (2004), “Stochastic / control with state-dependent noise,” Automatic Control, IEEE Transactions on, 49 (1) pp.45~57.
[88] Chen, B. S., Y. T. Chang & Y. C. Wang (2008), “Robust -stabilization design in gene networks under stochastic molecular noises: Fuzzy-interpolation approach,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 38 (1) pp.25~42.
[89] Emadi, H. & M. Mahzoon (2012), “Investigating the stabilizing effect of stochastic excitation on a chaotic dynamical system,” Nonlinear Dynamics, 67 (1) pp.505~515.
[90] Sun, Y., J. Cao & Z. Wang (2007), “Exponential synchronization of stochastic perturbed chaotic delayed neural networks,” Neurocomputing, 70 (13-15) pp.2477~2485.
[91] Zhao, J. (2012), “Adaptive Q-S synchronization between coupled chaotic systems with stochastic perturbation and delay,” Applied Mathematical Modelling, 36 (7) pp.3312~3319.
[92] Hu, A. & Z. Xu (2008), “Stochastic linear generalized synchronization of chaotic systems via robust control,” Physics Letters A, 372 (21) pp.3814~3818.
[93] Liu, C., C. Li & C. Li (2011), “Quasi-synchronization of delayed chaotic systems with parameters mismatch and stochastic perturbation,” Communications in Nonlinear Science and Numerical Simulation, 16 (10) pp.4108~4119.
[94] Tang, Y., R. Qiu, J. A. Fang, Q. Miao & M. Xia (2008), “Adaptive lag synchronization in unknown stochastic chaotic neural networks with discrete and distributed time-varying delays,” Physics Letters A, 372 (24) pp.4425~4433.
[95] Salarieh, H. & A. Alasty (2009), “Adaptive synchronization of two chaotic systems with stochastic unknown parameters,” Communications in Nonlinear Science and Numerical Simulation, 14 (2) pp.508~519.
[96] Baddas, L. B., J. P. Barbot, D. Boutat & R. Tauleigne (2004), “Sliding mode observers and observability singularity in chaotic synchronization,” Mathematical Problems in Engineering, 2004 (1) pp.11~31.
[97] Chen, D. & W. Zhang (2008), “Sliding mode control of uncertain neutral stochastic systems with multiple delays,” Mathematical Problems in Engineering, 2008 Article ID 761342, 9 pages.
[98] Wang, T., W. Xie & Y. Zhang (2012), “Sliding mode fault tolerant control dealing with modeling uncertainties and actuator faults,” ISA Transactions, 51 (3) pp.386~392.
[99] Gasimov, R. N., A. Karamancıoğlu & A. Yazıcı (2005), “A nonlinear programming approach for the sliding mode control design,” Applied Mathematical Modelling, 29 (11) pp.1135~1148.
[100] Yan, J. J., Y. S. Yang, T. Y. Chiang & C. Y. Chen (2007), “Robust synchronization of unified chaotic systems via sliding mode control,” Chaos, Solitons and Fractals, 34 (3) pp.947~954.
[101] Cho, J., J. C. Principe, D. Erdogmus & M. A. Motter (2007), “Quasi-sliding mode control strategy based on multiple-linear models,” Neurocomputing, 70 (4-6) pp.960~974.
[102] Moulay, E., M. Dambrine, N. Yeganefar & W. Perruquetti (2008), “Finite-time stability and stabilization of time-delay systems,” Systems and Control Letters, 57 (7) pp.561~566.
[103] Yin, J., S. Khoo, Z. Man & X. Yu (2011), “Finite-time stability and instability of stochastic nonlinear systems,” Automatica, 47 (12) pp.2671~2677.
[104] Perruquetti, W. & J. P. Barbot (2002), Sliding mode control in engineering, New York: Marcel Dekker, Inc..
[105] A. F. Filippov (1988), Differential equations with discontinuous righthand sides, Boston: Kluwer Academic Publishers.
[106] Yau, H. T. & J. J. Yan (2007), “Robust controlling hyperchaos of the Rössler system subject to input nonlinearities by using sliding mode control,” Chaos, Solitons and Fractals, 33 (5) pp.1767~1776.
[107] Khalil, H. K. (2002), Nonlinear systems( ed.), New Jersey: Macmillan Publishing Company.
[108] Jammazi, C. (2010), “On a sufficient condition for finite-time partial stability and stabilization: applications,” IMA Journal of Mathematical Control and Information, 27 (1) pp.29~56.
|
論文全文使用權限 |
同意授權校內瀏覽/列印電子全文服務,於2016-02-06起公開。同意授權校外瀏覽/列印電子全文服務,於2016-02-06起公開。 |
 |
|
 |