進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-3010201910400200
論文名稱(中文) 基於在記憶體處理改善非揮發性主記憶體為基礎之檔案系統的路徑查找與檔案存取
論文名稱(英文) Improving Path Lookup and File Access of NVMM-Based File Systems with PIM
校院名稱 成功大學
系所名稱(中) 資訊工程學系
系所名稱(英) Institute of Computer Science and Information Engineering
學年度 108
學期 1
出版年 108
研究生(中文) 蘇柏豪
研究生(英文) Po-Hao Su
學號 P76064172
學位類別 碩士
語文別 英文
論文頁數 50頁
口試委員 指導教授-張大緯
口試委員-張軒彬
口試委員-曾秀松
中文關鍵字 位址變換  能量  檔案存取  非揮發性主記憶體為基礎之檔案系統  路徑查找  效能  在記憶體處理 
英文關鍵字 Address Translation  Energy  File Access  NVMM-based File System  Path Lookup  Performance  Processing-in-memory 
學科別分類
中文摘要 由於具備快速的存取速度、位元組定址能力以及非揮發之特性的興新的非揮發性記憶體的到來,使得主記憶體與儲存器之間的界限逐漸被打破。這意味著我們不但可以將非揮發性記憶體視為主記憶體來使用,同時還能將非揮發性記憶體用於儲存器上。此時,研究人員開始注意到傳統的檔案系統是基於磁碟式的儲存硬體來設計的,如果直接以傳統的檔案系統來管理非揮發性主記憶體,則會使得系統的性能受到軟體負擔的影響而使系統無法有效地利用非揮發性主記憶體所帶來的好處。因此,直至目前已經有許多以非揮發性主記憶體為基礎之檔案系統被提出來解決上述的問題。
然而,我們發現以非揮發性主記憶體為基礎之檔案系統在進行檔案路徑查找時,會導致不規則的記憶體訪問。另外,我們還發現如果要存取的檔案大小超過了最後一層的快取大小時,會致使系統頻繁地發生快取未中。以上這兩點問題都會導致系統必須通過外部的記憶體通道來存取主記憶體,這將進一步的降低系統的效能以及增加系統的電力耗損。
為了解決上述之問題我們提出了一個解決方法,我們稱之為PHSIM。在PHSIM中,我們透過在記憶體中處理的技術來協助以非揮發性主記憶體為基礎之檔案系統進行檔案路徑查找以及檔案存取。透過在記憶體中處理的技術,我們就可以利用記憶體內部的存取通道來存取位在記憶體中的資料,以減少存取記憶體所引起的延遲和電力消耗。從實驗結果表明,在所有的工作量,PHSIM平均可以提高41%的效能並降低40%的能耗。
英文摘要 With the emergence of non-volatile memories with fast access performance, byte addressability and non-volatility characteristics, the line between main memory and storage is gradually broken. This means that we can use non-volatile memories as main memory, and such main memory can also be used as storage. At the same time, researchers have begun to notice that traditional file systems are designed for disk. If such file systems are used on non-volatile memories, the performance of the system will be affected by the software overhead. Therefore, there are many file systems based on non-volatile main memory that have been proposed to solve this problem. However, we found that the file system based on non-volatile main memory has irregular memory access when doing path lookup. In addition, if the file size to be accessed exceeds the least level cache, there will be frequent cache misses. These problems cause the system to access the memory through the external memory channel, which will make the system less efficient and increase system power consumption. In order to solve this problem, we have proposed PHSIM. In PHSIM, we handle path lookup and file access through process-in-memory technology, so that we can take advantage of the internal memory channel to reduce the delay and energy consumption caused by accessing memory. The experimental results show that on all the workloads, PHSIM can improve 41% performance and decrease 40% energy consumption on average.
論文目次 摘要 i
ABSTRACT ii
致謝 iii
TABLE OF CONTENTS iv
LIST OF TABLES vi
LIST OF FIGURES vii
Chapter I – INTRODUCTION 1
Chapter II – RELATED WORK 8
A. Ways to Solve the Von Neumann Bottleneck 8
B. The History of PIM 9
C. The PIM Research Category 10
1) The Functionality of and Applications for PIM 10
2) The Issues of PIM Adoption 12
3) The Infrastructures to Assess Benefits and Feasibility for PIM 13
D. Path Lookup 14
E. Memory Data Movement 16
Chapter III – DESIGN AND IMPLEMENTATION 17
A. Overview 17
1) Hardware Architecture 17
2) PHSIM Software Stack 18
B. Path Lookup 19
1) Application 19
2) Path Lookup Wrapper 20
3) Path Lookup Handler 21
C. File Access 23
1) Application 23
2) File Access Wrapper 23
3) File Access Handler 24
D. PIM Adoption Support 26
1) Address Translation Function 26
2) Cache Coherence Function 29
E. Summary 30
1) Initialization Phase 30
2) Execution Phase 31
Chapter IV – EVALUATION 32
A. Simulation Environment 32
B. Experiment Result 37
Chapter V – CONCLUSION AND DISCUSSION 41
REFERENCES 43
參考文獻 [1] J. Backus, “Can Programming Be Liberated from the Von Neumann Style?: A Functional Style and Its Algebra of Programs,” Communications of the ACM, vol. 21, no. 8, pp. 613-641, Aug. 1978, DOI: 10.1145/359576.359579.
[2] W. A. Wulf and S. A. Mckee, “Hitting the Memory Wall: Implications of the Obvious,” Computer Architecture News, vol. 23, no. 1, pp. 20-24, Mar. 1995, DOI: 10.1145/216585.216588.
[3] S. Ghose, K. Hsieh, A. Boroumand, R. Ausavarungnirun, and O. Mutlu, “Enabling the Adoption of Processing-in-Memory: Challenges, Mechanisms, Future Research Directions,” arxiv:1802.00320 [cs.AR], Feb. 2018.
[4] S. Wang and E. Ipek, “Reducing Data Movement Energy via Online Data Clustering and Encoding,” International Symposium on Microarchitecture (MICRO), pp. 1-13, Oct. 2016, DOI: 10.1109/MICRO.2016.7783735.
[5] D. Pandiyan and C. Wu, “Quantifying the Energy Cost of Data Movement for Emerging Smart Phone Workloads on Mobile Platforms,” International Symposium on Workload Characterization (IISWC), pp. 171-180, Oct. 2014, DOI: 10.1109/IISWC.2014.6983056.
[6] JEDEC Solid State Technology Association, JESD235: High Bandwidth Memory (HBM) DRAM, Oct. 2013.
[7] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S.-H. Chen, H.-L. Lung, and C. H. Lam, “Phase-Change Random Access Memory: A Scalable Technology” IBM Journal of Research and Development, vol. 52, no. 4.5, pp. 465-479, Jul. 2008, DOI: 10.1147/rd.524.0465.
[8] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The Missing Memristor Found,” Nature, vol. 453, pp. 80-83, May 2008, DOI: 10.1038/nature06932.
[9] T. Kawahara, “Scalable Spin-Transfer Torque RAM Technology for Normally-Off Computing,” Design & Test of Computers, vol. 28, no. 1, pp. 52-63, Jan.-Feb. 2011, DOI: 10.1109/MDT.2010.97.
[10] K. Vättö, I. Cutress, and R. Smith, “Analyzing Intel-Micron 3D XPoint: The Next Generation Non-Volatile Memory,” Jul. 2015. [Online]. Available: https://www.anandtech.com/show/9470/intel-and-micron-announce-3d-xpoint-nonvolatile-memory-technology-1000x-higher-performance-endurance-than-nand
[11] A. Rudoff, “Programming Models for Emerging Non-Volatile Memory Technologies,” ;login: magazine, vol. 38, no. 3, pp. 40-45, Jun. 2013.
[12] K. Bailey, L. Ceze, S. D. Gribble, and H. M. Levy, “Operating System Implications of Fast, Cheap, Non-Volatile Memory,” Hot Topics in Operating Systems (HotOS), May 2011.
[13] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and D. Coetzee, “Better I/O through Byte-Addressable, Persistent Memory,” Symposium on Operating Systems Principles (SOSP), pp. 133-146, Oct. 2009, DOI: 10.1145/1629575.1629589.
[14] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy, R. Sankaran, and J. Jackson, “System Software for Persistent Memory”, European Conference on Computer Systems (EuroSys), pp. 15:1-15:15, Apr. 2014, DOI: 10.1145/2592798.2592814.
[15] E. H.-M. Sha, X. Chen, Q. Zhuge, L. Shi, and W. Jiang, “A New Design of In-Memory File System Based on File Virtual Address Framework,” Transactions on Computers, vol. 65, no. 10, pp. 2959-2972, Oct. 2016, DOI: 10.1109/TC.2016.2516019.
[16] J. Ou, J. Shu, and Y. Lu., “A High Performance File System for Non-Volatile Main Memory,” European Conference on Computer Systems (EuroSys), pp. 12:1-12:16, Apr. 2016, DOI: 10.1145/2901318.2901324.
[17] J. Xu and S. Swanson, “NOVA: A Log-Structured File System for Hybrid Volatile/Non-Volatile Main Memories,” Conference on File and Storage Technologies (FAST), pp. 323-338, Feb. 2016.
[18] J. Corbet, “The NOVA filesystem,” Aug. 2017. [Online]. Available: https://lwn.net/Articles/729812/
[19] Z. Brown, “New NOVA Filesystem,” Jun. 2018. [Online]. Available: https://www.linuxjournal.com/content/new-nova-filesystem
[20] J. Corbet, “Dcache scalability and RCU-walk,” Dec. 2010. [Online]. Available: https://lwn.net/Articles/419811/
[21] N. Brown, “Pathname lookup in Linux,” Jun. 2015. [Online]. Available: https://lwn.net/Articles/649115/
[22] N. Brown, “RCU-walk: faster pathname lookup in Linux,” Jul. 2015. [Online]. Available: https://lwn.net/Articles/649729/
[23] N. Brown, “A walk among the symlinks,” Jul. 2015. [Online]. Available: https://lwn.net/Articles/650786/
[24] Y. Wang, D. Jiang, and J. Xiong, “Caching or Not: Rethinking Virtual File System for Non-Volatile Main Memory,” Workshop on Hot Topics in Storage and File Systems (HotStorage), Jul. 2018.
[25] P. H. Lensing, T. Cortes, and A. Brinkmann, “Direct Lookup and Hash-Based Metadata Placement for Local File Systems,” International Systems and Storage Conference (SYSTOR), pp. 5:1-5:11, Jun.-Jul. 2013, DOI: 10.1145/2485732.2485741.
[26] Intel® 64 and IA-32 Architectures Software Developer’s Manual, Intel Co., Santa Clara, California, USA, 2019.
[27] J. Bottomley, “Understanding Caching,” Jan. 2004. [Online]. Available: https://www.linuxjournal.com/article/7105
[28] S. Mittal, “A Survey of Recent Prefetching Techniques for Processor Caches,” ACM Computing Surveys, vol. 49, no. 2, pp. 35:1-35:35, Aug. 2016, DOI: 10.1145/2907071.
[29] B. Jacob, S. W. Ng, and D. T. Wang, “Evolutionary Developments of DRAM Device Architecture,” in Memory Systems: Cache, DRAM, Disk, USA: Morgan Kaufmann, ch. 12, sec. 3, pp. 464-480.
[30] G. Singh, L. Chelini, S. Corda, A. J. Awan, S. Stuijk, R. Jordans, H. Corporaal, and A. Boonstra, “A Review of Near-Memory Computing Architectures: Opportunities and Challenges,” Euromicro Conference on Digital System Design (DSD), pp. 608-617, Aug. 2018, DOI: 10.1109/DSD.2018.00106.
[31] H. S. Stone, “A Logic-in-Memory Computer,” Transactions on Computers, vol. C-19, no. 1, pp. 73-78, Jan. 1970, DOI: 10.1109/TC.1970.5008902.
[32] M. Gokhale, B. Holmes, and K. Iobst, “Processing in Memory: The Terasys Massively Parallel PIM Array,” Computer, vol. 28, no. 4, pp. 23-31, Apr. 1995, DOI: 10.1109/2.375174.
[33] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R. Thomas, and K. Yelick, “A Case for Intelligent RAM,” Micro, vol. 17, no. 2, pp. 34-44, Mar. 1997, DOI: 10.1109/40.592312.
[34] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz, “Smart Memories: A Modular Reconfigurable Architecture,” International Symposium on Computer Architecture (ISCA), pp. 161-171, Jun. 2000, DOI: 10.1109/ISCA.2000.854387.
[35] X. Hu, D. Stow, and Y. Xie, “Die Stacking Is Happening,” Micro, vol. 38, no. 1, pp. 22-28, Jan. 2018, DOI: 10.1109/MM.2018.011441561.
[36] C. Liu, “Application Trend and Fabrication Introduction of 3D Integrated Circuits through Silicon Vias Technology,” Nano Communication, vol. 20, no. 3, pp. 20-27.
[37] J. T. Pawlowski, “Hybrid Memory Cube (HMC),” Hot Chips Symposium (HCS), pp. 1-24, Aug. 2011, DOI: 10.1109/HOTCHIPS.2011.7477494.
[38] D. U. Lee, K. W. Kim, K. W. Kim, H. Kim, J. Y. Kim, Y. J. Park, J. H. Kim, D. S. Kim, H. B. Park, J. W. Shin, J. H. Cho, K. H. Kwon, M. J. Kim, J. Lee, K. W. Park, B. Chung, and S. Hong, “25.2 A 1.2V 8Gb 8-Channel 128GB/s High-Bandwidth Memory (HBM) Stacked DRAM with Effective Microbump I/O Test Methods Using 29nm Process and TSV,” International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), Feb. 2014, pp. 432-433, DOI: 10.1109/ISSCC.2014.6757501.
[39] J. Kim, C. S. Oh, H. Lee, D. Lee, H. R. Hwang, S. Hwang, B. Na, J. Moon, J. Kim, H. Park, J. Ryu, K. Park, S. K. Kang, S. Kim, H. Kim, J. Bang, H. Cho, M. Jang, C. Han, J. LeeLee, J. S. Choi, and Y. Jun, “A 1.2 V 12.8 GB/s 2 Gb Mobile Wide-I/O DRAM with 4×128 I/Os Using TSV Based Stacking,” IEEE Journal of Solid-State Circuits, vol. 47, no. 1, pp. 107-116, Jan. 2012, DOI: 10.1109/JSSC.2011.2164731.
[40] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology,” International Symposium on Microarchitecture (MICRO), pp. 273-287, Oct. 2017, DOI: 10.1145/3123939.3124544.
[41] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko, Y. Luo, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C. Mowry, “RowClone: Fast and Energy-Efficient in-DRAM Bulk Data Copy and Initialization,” International Symposium on Microarchitecture (MICRO), pp. 185-197, Dec. 2013, DOI: 10.1145/2540708.2540725.
[42] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, ”PRIME: A Novel Processing-in-Memory Architecture for Neural Network Computation in ReRAM-Based Main Memory,” International Symposium on Computer Architecture (ISCA), pp. 27-39, Jun. 2016, DOI: 10.1109/ISCA.2016.13.
[43] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester, D. Blaaauw, and R. Das, “Neural Cache: Bit-Serial in-Cache Acceleration of Deep Neural Networks,” International Symposium on Computer Architecture (ISCA), pp. 383-396, Jun. 2018, DOI: 10.1109/ISCA.2018.00040.
[44] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A Processing-in-Memory Architecture for Bulk Bitwise Operations in Emerging Non-Volatile Memories,” Annual Design Automation Conference (DAC), pp. 173:1-173:6, Jun. 2016, DOI: 10.1145/2897937.2898064.
[45] S. Jain, A. Ranjan, K. Roy, and A. Raghunathan, “Computing in Memory with Spin-Transfer Torque Magnetic RAM,” Transactions on Very Large Scale Integration Systems (VLSI), vol. 26, no. 3, pp. 470-483, Mar. 2018, DOI: 10.1109/TVLSI.2017.2776954.
[46] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim, “GraphPIM: Enabling Instruction-Level PIM Offloading in Graph Computing Frameworks,” International Symposium on High Performance Computer Architecture (HPCA), pp. 457-468, Feb. 2017, DOI: 10.1109/HPCA.2017.54.
[47] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing,” International Symposium on Computer Architecture (ISCA), pp. 105-117, Jun. 2015, DOI: 10.1145/2749469.2750386.
[48] A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu, R. Thakur, D. Kim, A. Kuusela, A. Knies, P. Ranganathan, and O. Mutlu, “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), pp. 316-331, Mar. 2018, DOI: 10.1145/3173162.3173177.
[49] B. Akin, F. Franchetti, and J. C. Hoe, “Data Reorganization in Memory Using 3D-Stacked DRAM,” International Symposium on Computer Architecture (ISCA), pp. 131-143, Jun. 2015, DOI: 10.1145/2749469.2750397.
[50] S. L. Xi, O. Babarinsa, M. Athanassoulis, and S. Idreos, ”Beyond the Wall: Near-Data Processing for Databases,” International Workshop on Data Management on New Hardware (DaMoN), pp. 2:1-2:10, May-Jun. 2015, DOI: 10.1145/2771937.2771945.
[51] S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan, A. Buyuktosunoglu, A. Davis, and F. Li, “NDC: Analyzing the Impact of 3D-Stacked Memory+Logic Devices on MapReduce Workloads,” International Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 190-200, Mar. 2014, DOI: 10.1109/ISPASS.2014.6844483.
[52] K. Hsieh, S. Khan, N. Vijaykumar, K. K. Chang, A. Boroumand, S. Ghose, and O. Mutlu, “Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation,” International Conference on Computer Design (ICCD), pp. 25-32, Oct. 2016, DOI: 10.1109/ICCD.2016.7753257.
[53] X. Yang, Y. Hou, and H. He, “A Processing-in-Memory Architecture Programming Paradigm for Wireless Internet-of-Things Applications,” Sensors, vol. 19, no. 1, pp. 1-23, Jan. 2019, DOI: 10.3390/s19010140.
[54] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and M. Ignatowski, “TOP-PIM: Throughput-Oriented Programmable Processing in Memory,” International Symposium on High-Performance Parallel and Distributed Computing (HPDC), pp. 85-98, Jun. 2014, DOI: 10.1145/2600212.2600213.
[55] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture,” International Symposium on Computer Architecture (ISCA), pp. 336-348, Jun. 2015, DOI: 10.1145/2749469.2750385.
[56] A. Bhattacharjee and D. Lustig, “Introduction,” in Architectural and Operating System Support for Virtual Memory, USA: Morgan & Claypool, ch. 1, sec. 1, pp. 1-4.
[57] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim, “NDA: Near-DRAM Acceleration Architecture Leveraging Commodity DRAM Devices and Standard Memory Modules,” International Symposium on High Performance Computer Architecture (HPCA), pp. 283-295, Feb. 2015, DOI: 10.1109/HPCA.2015.7056040.
[58] A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia, K. Hsieh, K. T. Malladi, H. Zheng, and O. Mutlu, “LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory,” Computer Architecture Letters, vol. 16, no. 1, pp. 46-50, Jan.-Jun. 2017, DOI: 10.1109/LCA.2016.2577557.
[59] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The Gem5 Simulator,” Computer Architecture News, vol. 39, no. 2, pp. 1-7, Aug. 2011, DOI: 10.1145/2024716.2024718.
[60] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A Fast and Extensible DRAM Simulator,” Computer Architecture Letters, vol. 15, no. 1, pp. 45-49, Jan.-Jun. 2016, DOI: 10.1109/LCA.2015.2414456.
[61] S. Xu, X. Chen, Y. Wang, Y. Han, X. Qian, and X. Li, “PIMSim: A Flexible and Detailed Processing-in-Memory Simulator,” Computer Architecture Letters, vol. 18, no. 1, pp. 6-9, Jan.-Jun. 2019, DOI: 10.1109/LCA.2018.2885752.
[62] E. Azarkhish, D. Rossi, I. Loi, and L. Benini, “Design and Evaluation of a Processing-in-Memory Architecture for the Smart Memory Cube,” International Conference on Architecture of Computing Systems (ARCS), pp. 19-31, DOI: 10.1007/978-3-319-30695-7_2.
[63] J. P. C. de Lima, “PIM-gem5: A System Simulator for Processing-in-Memory Design Space Exploration,” M.S. thesis, Dept. Computer Science, Universidade do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil, 2019.
[64] H. Asghari-Moghaddam, Y. H. Son, J. H. Ahn, and N. S. Kim, “Chameleon: Versatile and Practical Near-DRAM Acceleration Architecture for Large Memory Systems,” International Symposium on Microarchitecture (MICRO), pp. 1-13, Oct. 2016, DOI: 10.1109/MICRO.2016.7783753.
[65] K. Hsieh, E. Ebrahim, G. Kim, N. Chatterjee, M. O'Connor, N. Vijaykumar, O. Mutlu, and S. W. Keckler, “Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems,” International Symposium on Computer Architecture (ISCA), pp. 204-216, Jun. 2016, DOI: 10.1109/ISCA.2016.27.
[66] C. Tsai, Y. Zhan, J. Reddy, Y. Jiao, T. Zhang, and D. E. Porter, “How to Get More Value from Your File System Directory Cache,” Symposium on Operating Systems Principles (SOSP), pp. 441-456, Oct. 2015, DOI: 10.1145/2815400.2815405.
[67] D. Duchamp, “Optimistic Lookup of Whole NFS Paths in a Single Operation,” USENIX Summer Technical Conference (USTC), vol. 1, pp. 1-9, Jun. 1994.
[68] X. Yang, S. M. Blackburn, D. Frampton, J. B. Sartor, and K. S. McKinley, “Why Nothing Matters: The Impact of Zeroing,” International Conference on Object Oriented Programming Systems Languages and Applications (OOPSLA), pp. 307-324, Oct. 2011, DOI: 10.1145/2048066.2048092.
[69] L. Zhao, R. Iyer, S. Makineni, L. Bhuyan, and D. Newell, “Hardware Support for Bulk Data Movement in Server Platforms,” International Conference on Computer Design (ICCD), pp. 53-60, Oct. 2005, DOI: 10.1109/ICCD.2005.64.
[70] X. Jiang, Y. Solihin, L. Zhao, and R. Iyer, “Architecture Support for Improving Bulk Memory Copying and Initialization Performance,” International Conference on Parallel Architectures and Compilation Techniques (PACT), pp. 169-180, Sep. 2009, DOI: 10.1109/PACT.2009.31.
[71] U. Drepper, “Memory part 3: Virtual Memory,” Oct. 2007. [Online]. Available: https://lwn.net/Articles/253361/
[72] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown: Reading Kernel Memory from User Space,” USENIX Security Symposium, pp. 973-990, Aug. 2018.
[73] “/Documentation/x86/x86_64/mm.txt,” [Online]. Available: https://elixir.bootlin.com/linux/v4.18/source/Documentation/x86/x86_64/mm.txt
[74] Y. Choi, I. Song, M. Park, H. Chung, S. Chang, B. Cho, J. Kim, Y. Oh, D. Kwon, J. Sunwoo, J. Shin, Y. Rho, C. Lee, M. G. Kang, J. Lee, Y. Kwon, S. Kim, J. Kim, Y. Lee, Q. Wang, S. Cha, S. Ahn, H. Horii, J. Lee, K. Kim, H. Joo, K. Lee, Y. Lee, J. Yoo, and G. Jeong, “A 20nm 1.8V 8Gb PRAM with 40MB/s Program Bandwidth,” International Solid-State Circuits Conference, pp. 46-48, Feb. 2012, DOI: 10.1109/ISSCC.2012.6176872.
[75] G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: A Hybrid PRAM and DRAM Main Memory System,” Annual Design Automation Conference, pp. 664-669, Jul. 2009, DOI: 10.1145/1629911.1630086.
[76] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting Phase Change Memory as a Scalable Dram Alternative,” International Symposium on Computer Architecture (ISCA), pp. 2-13, Jun. 2009, DOI: 10.1145/1555754.1555758.
[77] V. Tarasov, E. Zadok, and S. Shepler, “Filebench: A Flexible Framework for File System Benchmarking,” ;login: magazine, vol. 41, no. 1, pp. 6-12, 2016.
[78] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi, “McPAT: An Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore Architectures,” International Symposium on Microarchitecture (MICRO), pp. 469-480, Dec. 2009, DOI: 10.1145/1669112.1669172.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-10-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-10-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw