進階搜尋


 
系統識別號 U0026-3008201916140200
論文名稱(中文) 兼顧空氣與熱環境之階梯狀講堂空調設計策略
論文名稱(英文) Air-conditioning System Design Strategy for Distribution of IAQ and Thermal Comfort in a Terraced Lecture Room
校院名稱 成功大學
系所名稱(中) 建築學系
系所名稱(英) Department of Architecture
學年度 107
學期 2
出版年 108
研究生(中文) 劉禹彤
研究生(英文) Yu-Tung Liu
電子信箱 philiagleamy@gmail.com
學號 N76064383
學位類別 碩士
語文別 中文
論文頁數 74頁
口試委員 指導教授-蔡耀賢
口試委員-葉育君
口試委員-廖夆淇
中文關鍵字 空氣分布指標  計算流體力學  室內空氣品質  熱舒適  空調設計 
英文關鍵字 Air Distribution Indices  CFD  IAQ  Thermal Comfort  HVAC System Design 
學科別分類
中文摘要 階梯狀講堂中因為空間量體較大且隨樓高遞減時,會呈現講台部分空氣體積較大,而聽眾席後排空氣體積較小的現象,形成空氣分布不均的問題。而空氣品質規範幾乎都針對全空間的範圍而非真正影響使用者的居住域,因此即使滿足規範中最小換氣量與冷房負荷,也未必能提供使用者良好的空氣與熱環境。再者階梯空間的空調設計須進行繁複的計算,對成本與設計期程造成負擔,最後往往依據經驗法則規劃,並以空氣均勻分布為假設,將出風口平均分布於空間平面,並裝設於天花板,卻沒有運用現有的技術,予以相應的對策。不但影響舒適性,同時消耗不必要的空調使用量,產生能源浪費。有鑑於此,階梯講堂的空調設計極待改善。
欲控制階梯狀空間的空氣與熱環境,須檢視其空氣分布,然而如空氣滯留時間、冷擊等代表空氣品質與熱舒適的因素難以量化、分析與評估。故本研究旨在發展適用於階梯講堂的檢討機制,以計算流體力學數值模擬迅速呈現結果的優勢,加上能夠將空氣分布量化比較的評估指標,以有效評估方案可行性,得到介於耗時費工卻精準的空調設計與過於粗略無法預測設計效果的經驗法則之間的折衷方法。
本研究中首先在現有空調設計流程中加入評估步驟,導入模擬工具以及評估指標。將居住域與其他區域分區建模,以空氣與熱環境分布指標呈現模擬案例之空調效果,更深入探討空氣分布。而後現場量測1個階梯狀空間案例之風速,藉由實測與模擬數據作比對,以驗證數值模擬工具的可信度。接著挑選另1個階梯狀空間為研究對象,以傳統設計方案與本研究所提出之設計方案進行模擬,最後歸納模擬結果以確認空調設計流程之適用性。
本研究選擇EDT與ADPI為熱舒適性指標,SVE 6為空氣品質指標,能將空氣分布量化分析,且能藉模擬工具可視化呈現。案例模擬中,傳統設計方案的ADPI值高達76.95 %趨近於建議值80 %,表示整體熱舒適表現良好。但是中層座位區EDT過冷區域超過規範建議的20%,表示有局部冷擊發生,推測是經驗法則忽略垂直射程的緣故。而空氣品質表現最差,居住域的平均SVE 6為2.54,其餘方案僅需要其3分之1的時間就能將不新鮮空氣排出。這3個指標的可視化結果與數據相互配合,能分析不同方案的優劣之處,以做出相應的調整,由此可見修改的空調設計流程有助於快速檢視設計效果,並予以改善建議。
英文摘要 Simplified HVAC system design by rule of thumb in medium size terraced lecture room for 150-450 occupants causes energy waste since the inlets are usually arranged at ceiling in checkerboard pattern, omitting the increment of air volume above the seat as the level decreases. Such condition happens when the budget and design schedule are tight, excluding the application of under floor ventilation devices, most recommended for terraced spaces for effectively ventilating occupied zone. Above all, to provide superior indoor air quality (IAQ) for audience, a fast and cost reducing way to design HVAC system is needed.
Therefore, this research improved HVAC system design process by inserting examination steps by means of CFD simulation, which enables visualizing IAQ and thermal comfort distribution for further analysis. In addition, CFD simulation process for terraced space has a few alternatives to apply, including zoning concept for segmenting occupied zone and non-occupied zone, etc.. In this research, visualizing air distribution standard is contained to study greater ventilation strategy.
To confirm the credibility of the simulation tool, a field measurement of the wind velocity was operated. Then, the IAQ and ADPI were examined referring common HVAC system design standards such as ASHRAE and discovered that the measured case provided inadequate ADPI. In order to analyze the air distribution and develop improving strategy, through the improved HVAC system design process, the inlet type and arrangement are decided in four cases including a conventional case based on mixing ventilation. And then, the IAQ and thermal comfort of those cases were analyzed by SVEs and ADPI standards. Finally, the applicability of improved HVAC system design process was discussed.
The traditional case has rather high ADPI as 76.95 % (80 % recommended), satisfying required thermal comfort, but the negative EDT at middle seats exceed 20 % which means cold draft occurs. In addition, the SVE 6 value is 2.54, which is three times longer than other cases to eliminate unfresh air. With the additional examination steps with these air distribution indices, it’s efficient to present visualized air distribution, analyze performance of cases and make adjustment.
論文目次 第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 3
1-3 研究目的 4
1-4 研究範圍 5
1-5 研究流程 6
第二章 文獻回顧與相關理論 7
2-1 階梯狀演講廳空氣與熱環境 7
2-2 通風換氣作用 8
2-2-1 空調設備與空氣分布 9
2-2-2 空調設計流程 10
2-3 空氣與熱環境評估 13
2-3-1 二氧化碳濃度 14
2-3-2 換氣效率指標SVEs 15
2-3-3 空氣分布性能指標ADPI 17
2-4 數值模擬輔助評估與改善策略 20
2-5 小結 20
第三章 研究方法 21
3-1 階梯狀演講廳現場實測 21
3-1-1 量測目的 21
3-1-2 量測案例 21
3-1-3 量測內容 22
3-2 空氣與熱環境綜合評估指標性質比較 24
3-3 CFD數值模擬應用 25
3-3-1 CFD數值模擬概要 25
3-3-2 紊流模型設定 25
3-3-3 網格系統與收斂標準 27
3-3-4 模擬軟體的評估指標計算處理 28
3-4 階梯狀空間空調設計流程的數值模擬 28
3-4-1 數值模擬於空調設計的運用 28
3-4-2 現行空調配置設計流程檢討 31
第四章 案例現況實測與模擬結果 35
4-1 實測計量測結果 35
4-1-1 換氣率 35
4-1-2 風速分布 38
4-2 實測模擬比對模型 39
4-3 實測與模擬比對結果 41
4-4 綜合評估指標模擬分析 45
第五章 案例空調配置改善設計 47
5-1 空調配置設計 47
5-2 空間設定與設計模型 52
5-3 模擬結果分析 55
5-3-1 風速模擬結果 56
5-3-2 溫度模擬結果 58
5-3-3 EDT與ADPI模擬結果 60
5-3-4 SVE6模擬結果 63
5-3-5 結果比較 65
5-4 小結 69
第六章 結論與建議 71
6-1 研究結論 71
6-2 後續研究建議 72
參考文獻 73
參考文獻 (一) 中文文獻
1. 冷凍空調技師公會全聯會等(2010), 空調系統設計手冊。
2. 村上周三(2007),CFD與建築環境設計,中國建築工業出版社,189-217。
3. 官文炎、林啟川(2002),體育館、巨型體育館(Dome)概念面面觀,北體學報,10,233-239。
4. 周伯丞、江哲銘(2005),不同空調通風路徑對工作空間室內污染物移除效果之比較,建築學報,54,41-55
5. 陳紀融(2014),連棟住宅結合導風板與通風塔之通風效益探討,成功大學碩士論文。
6. 賴榮平、蔡錦宗(1985),國立成功大學建築研究所環境控制研究室,建築空調設備工程品質之研究--從建築空調設備之設計施工及操作維護制度層面探討提高品質之途徑。
7. 許瑾瑜 (2018),室內生物性汙染調查與改善策略之研究—以圖書館為例,成功大學碩士論文。

(二) 英文文獻
1. Awbi, H. (2015). Ventilation and Air Distribution Systems in Buildings. Frontiers in Mechanical Engineering, 1. https://doi.org/10.3389/fmech.2015.00004
2. Behne, M. (1999). Indoor air quality in rooms with cooled ceilings.: Mixing ventilation or rather displacement ventilation? Energy and Buildings, 30(2), 155–166. https://doi.org/10.1016/S0378-7788(98)00083-8
3. Cehlin, M., &Moshfegh, B. (2010). Numerical modeling of a complex diffuser in a room with displacement ventilation. Building and Environment, 45(10), 2240–2252. https://doi.org/10.1016/J.BUILDENV.2010.04.008
4. Cheong, K. W. ., &Lau, H. Y. . (2003). Development and application of an indoor air quality audit to an air-conditioned tertiary institutional building in the tropics. Building and Environment, 38(4), 605–616. https://doi.org/10.1016/S0360-1323(02)00183-X
5. Ellis, J. (2010). Indoor air quality in lecture theatres and large enclosed public spaces. University of Brighton.
6. Flórez-Orrego, D., Arias, W., López, D., &Velásquez, H. (2012). Experimental and CFD study of a single phase cone-shaped helical coiled heat exchanger: an empirical correlation. In Proceedings of ECOS 2012 - The 25 th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (pp. 302–320). PERUGIA, ITALY. Retrieved from https://www.academia.edu/2053469/Experimental_and_CFD_study_of_a_single_phase_cone-shaped_helical_coiled_heat_exchanger_an_empirical_correlation?auto=download
7. Hardy, H. (2006). Building Type Basic for Performing Arts Facilities, Wiley
8. Heiselberg, P., Murakami, S., &Roulet, C.-A. (1998). Ventilation of Large Spaces in Buildings Analysis and Prediction Techniques. (P.Heiselberg, S.Murakami, &C.-A.Roulet, Eds.). Denmark: Aalborg University, Indoor Environmental Engineering.
9. Inc., A. (2001). ASHRAE Fundamental Handbook 2001.
10. Inc., A. (2007). ASHRAE 62.1 Ventilation for Acceptable Indoor Air Quality.
11. Inc., A. (2013). ASHRAE 55 Thermal Environmental Condition for Human Occupants.
12. Karimipanah, T., Awbi, H., Sandberg, M., &Blomqvist, C. (2007). Investigation of air quality, comfort parameters and effectiveness for two floor-level air supply systems in classrooms. Building and Environment, 42(2), 647–655. https://doi.org/10.1016/J.BUILDENV.2005.10.016
13. Liu, S., Clark, J., &Novoselac, A. (2016). Air diffusion performance index (ADPI) of overhead-air-distribution at low cooling loads. Energy and Buildings (Vol. 134). https://doi.org/10.1016/j.enbuild.2016.10.055
14. Liu, S., Clark, J., Novoselac, A. (2017), Air diffusion performance index (ADPI) of overhead-air-distribution at low cooling loads, Energy and Buildings 134 271–284
15. Lok, C., &Chan, A. (2001). CFD Analysis and Energt Simulation of a Gymnasium. Building and Environment, 36(3), 351–358.
16. Lu, W.-Z., Howarth, A. T., Adam, N., &Riffat, S. B. (1996). Modelling and measurement of airflow and aerosol particle distribution in a ventilated two-zone chamber. Building and Environment, 31(5), 417–423. https://doi.org/10.1016/0360-1323(96)00019-4
17. Lu, W.-Z., Howarth, A. T., Adam, N., &Riffat, S. B. (1998). Airborne particles in a ventilated room: Prediction and measurement. Building Service Engineering (Vol. 19). https://doi.org/10.1177/014362449801900203
18. Mendell, M. J., &Heath, G. A. (2005). Do Indoor Pollutants and Thermal Conditions in Schools Influence Student Performance? A Critical Review of the Literature. Indoor Air Journal, 15(1), 27–32. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.231.8426&rep=rep1&type=pdf
19. Moser, A., Clancy, E., Collineau, S., Fontaine, J.-R., Heiselberg, P., Howarth, A., …Yoshino, H. (1996). Energy Efficient Ventilation of Large Enclosures Technical Synthesis Report. Retrieved from http://www.iea-ebc.org/Data/publications/EBC_Annex_26_tsr.pdf
20. Neuman, D. J. (2003). Buildong Type Basic for College and University Facilities, 2nd Edition, Wiley
21. Persily, A. K. (1994). A Few Caveats on Carbon Dioxide Monitoring. IAQ Journal, 4(1), 22–25.
22. Persily, A. K. (1996). The Relationship Between Indoor Air Quality and Carbon Dioxide. In The 7th International Conference on Indoor Air Quality and Climate (pp. 961–966). Nagoya, Japan: Air Infiltration and Ventilation Centre.
23. Persily, A. K., &Jonge, L. (2017). Carbon dioxide generation rates for building occupants. Indoor Air, 27(5), 868–879. https://doi.org/10.1111/ina.12383
24. Rusly, E., M.AIRAH, Gagliardini, S., &Australia, T. (2014). The Truth about the Air Distrubution Index. Ecolibrium.
25. Sandberg, M., &Sjöberg, M. (1983). The use of moments for assessing air quality in ventilated rooms. Building and Environment, 18(4), 181–197. https://doi.org/10.1016/0360-1323(83)90026-4
26. Santamouris, M., &Allard, F. (1998). Natural Ventilation in Buildings: A Design Handbook (BEST (Buildings Energy and Solar Technology)). (M.Santamouris &F.Allard, Eds.) (1st ed.). London: Earthscan Publications Ltd.
27. Schild, P. G. (2004). Displacement Ventilation. French.
28. Sekhar, S. C., &Willem, H. C. (2004). Impact of airflow profile on indoor air quality—a tropical study. Building and Environment, 39(3), 255–266. https://doi.org/10.1016/J.BUILDENV.2003.09.003
29. Skistad, H., Mundt, E., Nielsen, P.V., Hagström, K., &Ralio, J. (2002). Displacement Ventilation in Non-Industrial Premises. Brussels, Belgium: REHVA.
30. Titus (2013), Diffusers, Redefine your comfort zone. ™ , www.titus-hvac.com
31. Titus (2013), Displacement Ventilation, Redefine your comfort zone. ™ , www.titus-hvac.com
32. Wei-Zhen, L., Howarth, A. T., Adam, N., &Riffat, S. B. (1998). Airborne particles in a ventilated room: Prediction and measurement. Building Service Engineering, 19, 73–78. https://doi.org/10.1177/014362449801900203
33. Yaglou, C. P., Riley, C. E., &Coggins, I. D. (1936). Ventilation Requirements. ASHVE Transactions, 42, 133–162.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-06-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-06-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw