進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-3008201820375800
論文名稱(中文) 設計一個新的硬脊膜外腔偵測器來協助麻醉醫師施行硬脊膜外麻醉
論文名稱(英文) Design a Novel Epidural Space Detector to Assist the Anesthesiologists in Performing Epidural Anesthesia
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 宋儼惠
研究生(英文) Yen-Hui Sung
學號 p86051171
學位類別 碩士
語文別 英文
論文頁數 56頁
口試委員 指導教授-林宙晴
口試委員-陳芃婷
口試委員-劉彥青
中文關鍵字 硬脊膜外麻醉  硬脊膜外腔  「阻力消失法」 
英文關鍵字 Epidural anesthesia  Epidural space  Loss of resistance technique 
學科別分類
中文摘要 硬脊膜外麻醉是將麻醉藥注入硬脊膜外腔的麻醉方式,屬於半身麻醉的一種,目前被廣泛應用於產婦的減痛分娩,可以達到良好的疼痛緩解又保有部分的知覺及肌張力,使產婦不受產痛之苦但又可隨產程進展配合用力娩出寶寶。硬脊膜外腔為介於黃韌帶及脊膜之間的腔室,它的特性為跟其他組織相比阻力明顯降低。1921年西班牙的軍醫Fidel Pãges發展為現在的硬脊膜外麻醉技術,即所謂的「阻力消失法」-持續施加壓力於接在硬脊膜外針的空針,當阻力消失即表示硬脊膜外針到達硬脊膜外腔,即可施打麻醉藥物或置放導管完成硬脊膜外麻醉。若沒有發現已到達硬脊膜外腔,硬脊膜外針繼續深入,則可能穿破脊膜而致腦脊髓液流出甚至傷害到神經。故如何辨識硬脊膜外腔是非常重要的。但直到現在硬脊膜外麻醉還是使用1921年的「阻力消失法」去辨識硬脊膜外腔。難道沒有更客觀的方法去辨識硬脊膜外腔? 直到2012年有英國團隊發明了Epidrum,Epidrum有一可打氣膨出的薄膜,在硬脊膜外針與空針間加裝上Epidrum,一旦硬脊膜外針進入硬脊膜外腔,薄膜即塌陷顯示壓力變化。但因仍須接上空針,故Epidrum增加了整體長度而有操作困難的缺點;2014年台大團隊研發了EpiFaith,聲稱有簧片可偵測硬脊膜外腔並有煞車功能,但設計複雜,可性度不足。我們設計出一種可明確顯示出硬脊膜外腔的阻力變化的工具,希望能提高硬脊膜外麻醉的成功率並縮短施打時尋找確認硬脊膜外腔的時間。
英文摘要 Epidural anesthesia is one form of regional anesthesia. The anesthesiologist injects local anesthetics into epidural space that results in regional block. It is widely used in painless labor for excellent pain relief with minimal effect of motor block. In 1921, a Spanish military surgeon, Fidel Pãges, developed the modern technique of epidural anesthesia which is known by “loss of resistance” (LOR) technique. “LOR” technique involves constant application of pressure to the plunger of a syringe to identify the epidural space while advancing the epidural needle. Epidural space is between ligamentum flavum and dura matter. The resistance within epidural space is relatively lower than adjacent tissue. Therefore “LOR” happens when epidural needle enters the epidural space. It’s very important to identify the epidural space when the anesthesiologist performs epidural anesthesia. However, till now, the anesthesiologist still depends on “LOR” technique to detect epidural space. Is there any better way to identify epidural space? We design a novel device to assist the anesthesiologists in finding epidural space. We hope this device could increase the success rate of epidural anesthesia and shorten the procedure time.
論文目次 Contents
List of Figures VII
List of Tables IX
Chapter 1 introduction 1
1.1 Background and Motivation 1
1.1.1 Epidural anesthesia 1
1.1.2 Modern technique of epidural anesthesia 3
1.1.3 Shortcomings of modern technique of epidural anesthesia 6
1.2 Comparison of current devices 7
1.2.1 Ultrasound-guided epidural blockade 7
1.2.2 Epidrum 8
1.2.3 Fiberoptic-guided epidural needle 9
1.2.4 EpiFaith 11
Chapter 2 Materials and Methods 12
2.1 Design a novel device as a visual detector of the 12
2.1.1 The aim of our design 12
2.1.2 Design processes 12
2.2 Check the physical property of the device 14
2.2.1 Measure the volume-pressure relationship of 14
2.2.2 Measure the time-pressure relationship of the device 15
2.2.3 Measure Young’s modulus of the material 16
2.3 Efficacy tests 16
2.4 Functional tests 16
2.5 Substantial equivalence tests 18
2.5.1 The materials of experimental model 19
2.5.2 The subgroups of the operators 20
2.5.3 The substantial equivalence tests of our device 20
2.6 Statistical analysis 21
Chapter 3 Results 22
3.1 The design of our device 22
3.2 The first prototype 24
3.3 The second prototype 25
3.4 The third prototype 26
3.4.1 The volume-pressure relationship of the third prototype 27
3.4.2 The time-pressure relationship of the third prototype 28
3.4.3 Functional tests of the third prototype 28
3.4.4 Substantial equivalence tests 30
3.5 The fourth prototype 32
3.5.1 The volume-pressure relationship of the fourth prototype 33
3.5.2 The time-pressure relationship of the fourth prototype 34
3.5.3 Young’s modulus of the material of the fourth prototype 34
3.5.4 Functional tests of the fourth prototype 36
3.5.5 Substantial equivalence tests of the fourth  prototype 37
Chapter 4 Discussion and Prospect 44
4.1 The differences between our third and fourth prototype 44
4.2 The contribution of the project and future work 51
References 53

參考文獻 [1] C.D. Sutton, B. Carvalho, What’s Trending Now? An Analysis of Trends in Internet Searches for Labor Epidurals, International Journal of Obstetric Anesthesia,30,52-57,2017.
[2] J.F. Butterworth, D.C. Mackey, J.D. Wasnick, Spinal, Epidural & Caudal Blocks, Clinical Anesthesiology, 940-945, 2013.
[3] V.L. Hoffmann, M.P. Vercauteren, J.P. Vreugde, G.H. Hans, H.C. Coppejans, H.A. Adriaensen, Posterior Epidural Space Depth: Safety of the Loss of Resistance and Hanging Drop Techniques, British Journal of Anaesthesia, 83(5), 807-809, 1999.
[4] M.L. Edward, A.D. Jackson, The Historical Development of Obstetric Anesthesia and Its Contributions to Perinatology, American Journal of Perinatology, 34(3), 211-216, 2017.
[5] R.D. Miller, M.C. Pardo, Jr., Spinal and Epidural Anesthesia, Basics of Anesthesia, 275-276, 2011.
[6] J. Hermanides, M.W. Hollmann, M.F. Stevens, P. Lirk, Failed Epidural: Causes and Management, British Journal of Anesthesia, 109(2), 144-154, 2012,
[7] M. Tien, D.F. Peacher, A.M. Franz, S.Y. Jia, A.S. Habib, Failure Rate and Complications Associated with the Use of Spinal Catheters for the Management of Inadvertent Dural Puncture in the Parturient: a Retrospective Comparison with Re-sited Epidural Catheters, Current Medical Research & Opinion, 32(5), 841-846, 2016.
[8] C. Motamed, F. Farhat, F. Remerand, J. Stephanazzi, A. Lapianche, C. Jayr, An
Analysis of Postoperative Epidural Analgesia Failure by Computed Tomography Epidurography, Anesthesia & Analgesia, 103, 1026-1032, 2006.
[9] R. Schier, D. Guerra, J. Aguillar, G. F. Pratt, M. Hernandez, K, Boddu, B. Riedel, Epidural Space Identification: A Meta-Analysis of Complications After Air Versus Liquid as the Medium for Loss of Resistance, International Anesthesia Research Society, 109(6), 2012-2020, 2009.
[10] S. Eappen, A. Blinn, S. Segal, Incidence of Epidural Catheter Replacement in Parturient: a Retrospective Chart Review, International Journal of Obstetric Anesthesia, 7, 220-225, 1998.
[11] E.J. Drake, J. Coghill, J.R. Sneyd, Defining Competence in Obstetric Epidural Anaesthesia for Inexperienced Trainees, British Journal of Anasethesia, 114(6), 951-951, 2015,
[12] G.R. de Filho, H.P. Gomes, M.H. da Fonseca, J.C. Hoffman, S.G. Pederneiras, J.H. Garcia, Predictors of Successful Neuraxial Block: a Prospective Study, European Journal of Anaesthesiology, 19, 447-451, 2002.
[13] A. McLeod, A. Roche, M. Fennely, Case Series: Ultrasonography may Assist Epidural Insertion in Scoliosis Patients, Canadian Journal of Anesthesia, 52(7),.717-721, 2005.
[14] D. Belavy, M.J. Ruitenberg, R.B. Brijball, Feasibility Study of Real-Time Three-/Four-Dimensional Ultrasound for Epidural Catheter Insertion, British Journal of Anaesthesia, 107(3), 438-445, 2011.
[15] A. Sawada, N. Kii, Y. Yoshikawa, M. Yamakage, Epidrum: a New Device to Identify the Epidural Space with an Epidural Tuohy Needle, Journal of Anesthesiology, 26, 292-295, 2012.
[16] S.W. Kim, Y.M. Kim, S.H. Kim, M.H. Chung, Y.R. Choi, E.M. Choi, Comparison of Loss of Resistance Technique between Epidrum and Conventional Method for Identifying the Epidural Space, Korean Journal of Anesthesiology, 62(4), 322-326, 2012.
[17] C.K. Ting, M.Y. Tsou, P.T. Chen, A New Technique to Assist Epidural Needle Placement: Fiberoptic-Guided Insertion Using Two Wavelengths, Anesthesiology, 112, 50, 1128-1135, 2010.
[18] C.S. Gong, C.K. Ting, Investigation of an Intelligent System for Fiber Optic-Based Epidural Anesthesia, BioMed Research International, 2014, Article ID 437679, 7 pages.
[19] W.N. Teng, M.Y. Tsou, W.K. Chang, C.K. Ting, Eyes on the Needle: Identification and Confirmation of the Epidural Space, Asian Journal of Anesthesiology, 55, 30-34, 2017.
[20] 510k, www.fda.gov/MedicalDevice/DeviceRegulationand Guidance.
[21] W.A. Osborne, The Elasticity of Rubber Balloons and Hollow Viscera, Proceedings of the Royal Society of London, Series B, 81, 485-499, 1909.
[22] R. Mangan, M. Destrade, Gent Models for the Inflation of Spherical Balloons, International Journal of Non-Linear Mechanics, 68, 52-58, 2015.
[23] N. Vaughabn, V.N. Dubey, Michael Y.K. Wee, R. Isaacs, A Review of Epidural Simulators: Where Are We Today? Medical Engineering & Physics, 35(9), 1235-1250, 2013.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-09-03起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw