進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-3008201811191800
論文名稱(中文) 近端脛腓關節不穩定合併後外膝疼痛病患之影像學分析與功能評估
論文名稱(英文) Image analysis and functional assessments for patients with chronic proximal tibiofibular instability and posterolateral knee pain
校院名稱 成功大學
系所名稱(中) 物理治療學系
系所名稱(英) Department of Physical Therapy
學年度 106
學期 2
出版年 107
研究生(中文) 陳岳
研究生(英文) Yueh Chen
學號 t66054056
學位類別 碩士
語文別 英文
論文頁數 55頁
口試委員 指導教授-黃英修
口試委員-陳怡靜
口試委員-林政立
中文關鍵字 膝後外側疼痛  近端脛骨腓骨關節不穩定  醫學影像  肌電圖  動作功能評估 
英文關鍵字 Posterolateral knee pain  proximal tibiofibular joint instability  Medical image  Electromyography  Motor functional assessments 
學科別分類
中文摘要 背景簡介

近端脛腓骨關節不穩定是膝後外側疼痛少見的病症,病患臨床表現是運動時,合併腱後肌群外側腫脹疼痛或近遠端的轉移痛,目前僅有少數研究探討此疾病,而且現階段病理機制與臨床治療方式仍未有共識,復健治療建議訓練腱後肌群來代償受傷的軟組織,但此建議並未詳細對病患軟組織受傷型態分類了解病因與其對功能的影響,同時並無肌力評估及肌電圖研究的實證支持。本研究的目的為: 1) 以影像分析病患近端脛腓骨關節病灶附近的軟組織改變, 2) 以肌電圖分析健康人與病患膝關節健側患側主要肌群在坐站過程中活化的差異,3) 分析健康人與病患健側患側股二頭肌對股四頭肌最大自主收縮力量變化,4) 探討不同類型的近端脛腓骨關節不穩定患者,膝關節功能量表、影像學、肌力、肌電圖變化之間的差異。

研究方法
本實驗收集十八名慢性近端脛骨腓骨關節不穩定病患 (平均年齡:43歲),每名病患受試者接受三種影像檢查,包括:核磁共振檢查膝關節與近端脛腓骨關節鄰近軟組織完整性、超音波評估近端脛腓骨關節移動程度、以及X光影像判讀腓骨頭形狀與不穩定類型;病患問卷調查包括:膝關節功能量表(KOOS問卷)以評估日常生活功能及近期疼痛狀況。所有受試者都接受動作功能檢查包括:12次坐站過程中股四頭肌、股二頭肌的表面肌電圖、膝關節角度變化、腓骨骨頭的震動量、以及膝關節最大自主收縮力量。

實驗結果
X光影像發現病患屬於前外不穩定型(anterolateral type)佔38 %,半脫位型(sub-lax type)佔62 %。其中腓骨頭形狀44 %為斜型,56 %為水平型;核磁共振檢查發現損傷病患主要是:關節囊83 %, 關節囊積水66%,股二頭肌接點鄰近軟組織腫脹50 %, 近端脛腓韌帶49%,但並無發現側韌帶及股二頭肌損傷的病患。超音波檢查發現:僅有在自主收縮彎曲時患側(0.38±0.28公分)與健側(0.16±0.12公分)的脛腓骨關節移動距離有邊緣顯著差異 (p = 0.007)。患側與健側的膝伸直與膝彎曲最大自主收縮以及膝伸直與膝彎曲最大自主收縮比值,都無統計顯著差異 (p > 0.05)。坐站過程中患側及健側的股四頭肌、股二頭肌肌電圖均方根值、兩肌肉肌電圖均方根值比值無統計顯著差異(p > 0.05),且患側及健側腓骨骨頭的震動無統計顯著差異(p > 0.05)。以超音波評估以近端脛腓骨關節移動距離將病患分成極不穩定與不穩定兩組,兩組在肌電圖、腓骨骨頭震動量、最大自主收縮力量並無功能上的統計差異,若將病患分成前外側不穩定及半脫位型兩種不穩定類型,兩組在僅在最大自主收縮力量比值有差異,在肌電圖、腓骨骨頭震動量、肌肉個別最大自主收縮力量等參數並無顯著差異。

結論

慢性近端脛腓骨關節不穩定鄰近軟組織有明顯的損傷,以關節囊、股二頭肌接點與近端脛腓韌帶最為常見,但股二頭肌肌腱並沒有損傷徵候,超音波影像顯示患側有自主收縮彎曲的不穩定性;然而患側膝關節最大自主收縮力量與健側並無差異,在從坐到站的過程中,近端脛腓關節不穩定慢性患側的各項功能評估,包含肌電圖, 腓骨骨頭震動量的變數與健側亦無顯著差異;本研究支持慢性近端脛腓骨關節不穩定患者雖有軟組織的傷害,但組織病變對輕度日常活動的功能影響不大,且功能改變與關節不穩定的型式與大小關係性亦無差異存在。
英文摘要 Background and Objective

The proximal tibiofibular joint (PTFJ) instability is a singular cause of posterolateral knee pain. Symptoms include tenderness and swelling over the tendons/muscles of the hamstring or radiating pain during exercise. Few research studies have investigated PTFJ pathogenesis, and pathological mechanisms and treatment of PTFJ still remain controversial to date. Rehabilitation specialists advocate muscle strengthening for functional restoration, though the empirical suggestion is not evidence-based from studies of kinematics and EMG. Also, damages in the soft-tissue around the PTFJ and their relations to functional outcomes have not been well classified. Therefore, the aims of this study are to 1) use image techniques to examine soft-tissue of the PTFJ for patients with posterolateral knee pain and proximal tibiofibular instability, 2) examine muscle activation of knee muscles of the unaffected/affected limbs of the patients, and 3) contrast parametric differences of images, electromyography, and force measure for different types of patients with PTFJ instability.

Methods

Eighteen patients with chronic PTFJ instability from orthopedic outpatient clinic at Sin-lâu Hospital (SLH) with average age 43 years old (range : 20-59) participated in this study. The patients received three kinds of image examinations, including MRI to check soft-tissue integrity around PTFJ, ultrasound to evaluate the distance between the base of fibula styloid joint and gerdys tubercle, and X-ray to characterize the shape of fibula head and instability type. The patients also completed Knee Injury and Osteoarthritis Outcome Score (KOOS) questionnaire to scale functional capacity and degree of knee pain. Functional examinations were conducted for all participants, including maximum voluntary force of the knee joint and electromyography/vibration of fibular head, and knee angular movement during self-paced sit-to-stand movement.

Results
X-ray image revealed that the patients were of 38 % anterolateral type and 62 % in sub-lax type. Fibula head shape of 44 % patients was oblique, and fibula head shape of the other patients (56 %) was horizontal. MRI results showed that soft-tissue injury occurred primarily on capsule injury of in the posterolateral knee (83 %), joint fluid accumulation in PTFJ (66%), and soft tissue edema around PTFJ (50 %). In particular, no patients were reported with rupture or partial tear in the collateral ligaments and biceps femoris muscle. Ultrasound image revealed that the tibio-fibula distance for the unaffected (0.16±0.12 cm) and affected (0.38±0.28 cm) limbs was marginally different during forceful flexion (p=0.007). Maximal voluntary contraction (MVC) of knee flexion/knee extension and ratio of both did not differ between the affected and unaffected limbs (p > 0.05). In the course of sit-to-stand movement, root mean square of EMG for the quadriceps, hamstring, and ratio of both (hamstring-quadriceps ratio) were not significantly different for the both unaffected and affected limbs (p > 0.05), together with insignificant difference in the amount of vibration of the fibular head (p > 0.05). If patients were classified into the unstable and very-unstable subgroups according to the tibio-fibula distance under ultrasound forceful flexion examination, all electromyographic variables and vibration of fibular head were not different for the two subgroups (p > 0.05). Similar parametric indifferences were also applicable when grouping instability of the patients with the anterolateral type and sub-lax type (p > 0.05) except a higher H/Q ratio in the anterolateral type.

Conclusion
Patients with chronic PTFJ instability manifested with soft-tissue damages, especially on the capsule, edema around PTFJ, and proximal tibiofibular ligament, except for the biceps femoris. Ultrasound image revealed increase in the tibio-fibula distance under forceful flexion. As compared to the counterpart, the affected limb of the patients did not exhibit significant differences in maximum voluntary contracture of the knee joint as well as force electromyographic measures/fibular head vibration during the sit-to-stand maneuver. Although soft-tissue of the patients with chronic PTFJ instability was impaired, yet this impairment seemed not to correlate with motor function of mild daily activity, independent of instability type and level of instability.
論文目次 Abstract I
中文摘要 V
致謝 VII
Table of Contents IX
List of Tables XI
List of Figures XII
Chapter 1. Introduction 1
1.1 The posterolateral knee pain and proximal tibio fibula joint 1
1.2 The proximal tibio fibula joint instability 2
1.3 Symptoms and image findings of PTFJ instability 4
1.4 Rationales, research questions, and hypotheses for treatment of PTFJ. instability 5
Chapter 2. Methods 7
2.1 Participants 7
2.2 Physical examinations 8
2.3 Experimental procedure and apparatus 9
2.3.1 Image examinations 9
2.3.2 Maximal voluntary contraction (MVC)……………………………….12
2.3.3 Kinematic analysis for self-paced sit-to-stand movement………………12
2.3.4 Knee injury and Osteoarthritis Outcome Score (KOOS)………………..15
2.4 Statistical Analysis……………………………………………...……....16
Chapter 3. Results 17
3.1 Image findings 17
3.2 Maximal voluntary contraction and EMG activities of the knee muscles and vibration of fibular head during sit-to-stand movement 19
3.3 Functional out3.4 Functional outcomes and joint instability pattern.20
3.4 Functional outcomes and joint instability pattern 21
Chapter 4. Discussion 22
4.1 Loss of soft-tissue integrity and shape of fibula head with image finding...22
4.2 Functional assessments in MVC and kinematic properties during sit-to-stand movement25
4.3 Functional assessments for various instability classifications and therapeutic implications .27

4.4 Methodological Limitations 30
Chapter
5. Conclusion 31
Tables 32
Figures 39
References 50
參考文獻 1. Semonian RH, Denlinger PM, Duggan RJ. Proximal tibiofibular subluxation relationship to lateral knee pain: a review of proximal tibiofibular joint pathologies. J Orthop Sports Phys Ther. 1995;21(5):248-57
2. De Franca GG. Proximal tibiofibular joint dysfunction and chronic knee and low back pain. J Manipulative Physiol Ther. 1992;15(6):382-7
3. Ullrich K, Krudwig WK, Witzel U. Posterolateral aspect and stability of the knee joint. I. Anatomy and function of the popliteus muscle-tendon unit: an anatomical and biomechanical study. Knee Surg Sports Traumatol Arthrosc. 2002;10(2):86-90
4. Thaunat M, Pioger C, Chatellard R, Conteduca J, Khaleel A, Sonnery-Cottet B. The arcuate ligament revisited: role of the posterolateral structures in providing static stability in the knee joint. Knee Surg Sports Traumatol Arthrosc. 2014;22(9):2121-7
5. Henriksen M, Rosager S, Aaboe J, Bliddal H. Adaptations in the gait pattern with experimental hamstring pain. J Electromyogr Kinesiol. 2011;21(5):746-53
6. Owen R. Recurrent dislocation of the superior tibio-fibular joint. A diagnostic pitfall in knee joint derangement. J Bone Joint Surg Br. 1968;50(2):342-5
7. Ogden JA. Subluxation of the proximal tibiofibular joint. Clin Orthop Relat Res. 1974
8. Geeslin AG, LaPrade RF. Location of bone bruises and other osseous injuries associated with acute grade III isolated and combined posterolateral knee injuries. Am J Sports Med. 2010; 38(12):2502-8
9. Ranawat A, Baker CL 3rd, Henry S, Harner CD. Posterolateral corner injury of the knee: evaluation and management. J Am Acad Orthop Surg. 2008; 16(9):506-18.
10. LaPrade RF. Posterolateral knee injuries: anatomy, evaluation, and treatment. Stuttgart: Thieme; 2011.
11. Scuderi GR, Scott WN. Surgery of the knee. In: Insall JN, Windsor RE, Scott WN, Kelly MA, Aglietti P, editors. Classification of knee ligament injuries. Churchill Livingstone Inc, 1993. p. 387 –399.
12. Fanelli GC, Feldmann DD. ‘Management of combined ACL/PCL/posterolateral complex injuries of the knee’. Oper Tech Sports Med. 1999;7:143-149.
13. Hughston JC, Andrews JR et al. ‘Classification of knee ligament instabilities. Part II. The lateral compartment’. J Bone Joint Surg Am. 1976;58-A:173-179.
14. Andersen K. Dislocation of the superior tibiofibular joint. Injury. 1985;16(7):494-8
15. Giachino AA. Recurrent dislocations of the proximal tibiofibular joint. Report of two cases. J Bone Joint Surg Am. 1986;68(7):1104-6
16. Kiss RM, Kocsis L, Knoll Z. Joint kinematics and spatial-temporal parameters of gait measured by an ultrasound-based system. Med Eng Phys. 2004;26(7):611-20
17. Bejek Z, Paróczai R, Illyés A, Kiss RM. The influence of walking speed on gait parameters in healthy people and in patients with osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2006;14(7):612-22
18. See A, Bear RR, Owens BD. Anatomic mapping for surgical reconstruction of the proximal tibiofibular ligaments. Orthopedics. 2013;36(1):e58-63
19. Ralphs JR, Benjamin M. The joint capsule: structure, composition, ageing and disease. J Anat. 1994.
20. Hu J, Klinich KD, Miller CS, et al. A stochastic visco-hyperelastic model of human placenta tissue for finite element crash simulations. Ann Biomed Eng. 2011;39(3):1074-83
21. Carroll CC, Dickinson JM, Haus JM, et al. Influence of aging on the in vivo properties of human patellar tendon. J Appl Physiol (1985). 2008;105(6):1907-15
22. Rachmat HH, Janssen D, Verkerke GJ, Diercks RL, Verdonschot N. Material properties of the human posterior knee capsule. Biomed Mater Eng. 2015;25(2):177-87
23. Murat Bozkurt et al ‘The proximal tibiofibular joint: an anatomic study. Clin Orthop Relat Res. 2003; (406): 136-40.
24. Resnick D, Newell JD, Guerra J Jr, Danzig LA, Niwayama G, Goergen TG. Proximal tibiofibular joint: anatomic-pathologic-radiographic correlation. AJR Am J Roentgenol. 1978;131(1):133-8
25. Eichenblat M, Nathan H. The proximal tibio fibular joint. An anatomical study with clinical and pathological considerations. Int Orthop. 1983;7(1):31-9
26. Marshall JL, Girgis FG, Zelko RR. The biceps femoris tendon and its functional significance. J Bone Joint Surg Am. 1972;54(7):1444-50
27. Aladin A, Lam KS, Szypryt EP. The importance of early diagnosis in the management of proximal tibiofibular dislocation: a 9- and 5-year follow-up of a bilateral case. Knee 2002;9(3):233-6
28. Nieuwe Weme RA, Somford MP, Schepers T. Proximal tibiofibular dislocation: a case report and review of literature. Strategies Trauma Limb Reconstr. 2014;9(3):185-9
29. van Wulfften Palthe AF, Musters L, Sonnega RJ, van der Sluijs HA. Dislocation of the proximal tibiofibular joint, do not miss it. BMJ Case Rep. 2015
30. Sekiya JK, Kuhn JE. Instability of the proximal tibiofibular joint. J Am Acad Orthop Surg. 2003;11(2):120-128.
31. Draganich LF, Nicholas RW, Shuster JK, Sathy MR, Chang AF, Simon MA. The effects of resection of the proximal part of the fibula on stability of the knee and on gait. J Bone Joint Surg Am. 1991;73(4):575-583.
32. Halbrecht JL, Jackson DW. Recurrent dislocation of the proximal tibiofibular joint. Orthop Rev. 1991;20(11):957-960.
33. Shapiro GS, Fanton GS, Dillingham MF. Reconstruction for recurrent dislocation of the proximal tibiofibular joint: a new technique. Orthop Rev. 1993;22(11):1229-1232.
34. Maffulli N, Spiezia F, Oliva F, Testa V, Capasso G, Denaro V. Gracilis autograft for recurrent posttraumatic instability of the superior tibio- fibular joint. Am J Sports Med. 2010;38(11):2294-2298.
35. Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS. Biomechan- ical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg Am. 1984;66(3):344-352
36. Marchetti DC, Moatshe G, Phelps BM, et al. The Proximal Tibiofibular Joint: A Biomechanical Analysis of the Anterior and Posterior Ligamentous Complexes. Am J Sports Med. 2017;45(8):1888-1892
37. Kruckeberg BM, Cinque ME, Moatshe G, et al. Proximal Tibiofibular Joint Instability and Treatment Approaches: A Systematic Review of the Literature. Arthroscopy. 2017;33(9):1743-1751
38. See A, Bear RR, Owens BD. Anatomic mapping for surgical reconstruction of the proximal tibiofibular ligaments. Orthopedics. 2013;36(1):e58-63
39. Burke CJ, Grimm LJ, Boyle MJ, Moorman CT 3rd, Hash TW 2nd. Imaging of Proximal Tibiofibular Joint Instability: A 10 year retrospective case series. Clin Imaging. 2016;40(3):470-6
40. Halbrecht JL, Jackson DW: Recurrent dislocation of the proximal tibiofibular joint. Orthop Rev. 1991;20:957-960.
41. Scott J, Lee H, Barsoum W, van den Bogert AJ. The effect of tibiofemoral loading on proximal tibiofibular joint motion. J Anat. 2007;211(5):647-53
42. Shanbehzadeh S, Mohseni Bandpei MA, Ehsani F. Knee muscle activity during gait in patients with anterior cruciate ligament injury: a systematic review of electromyographic studies. Knee Surg Sports Traumatol Arthrosc. 2017;25(5):1432-1442
43. Knoll Z, Kiss RM, Kocsis L. Gait adaptation in ACL deficient patients before and after anterior cruciate ligament reconstruction surgery. J Electromyogr Kinesiol. 2004;14(3):287-94
44. Knoll Z, Kocsis L, Kiss RM. Gait patterns before and after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2004;12(1):7-14
45. Rudolph KS, Axe MJ, Buchanan TS, Scholz JP, Snyder-Mackler L. Dynamic stability in the anterior cruciate ligament deficient knee. Knee Surg Sports Traumatol Arthrosc. 2001;9(2):62-71
46. Lindström M, Felländer-Tsai L, Wredmark T, Henriksson M. Adaptations of gait and muscle activation in chronic ACL deficiency. Knee Surg Sports Traumatol Arthrosc. 2010;18(1):106-14
47. Fitzgerald GK, Piva SR, Irrgang JJ. Reports of joint instability in knee osteoarthritis: its prevalence and relationship to physical function. Arthritis Rheum. 2004;51(6):941-6
48. Sharma L, Lou C, Felson DT, Dunlop DD, Kirwan-Mellis G, Hayes KW, et al. Laxity in healthy and osteoarthritic knees. Arthritis Rheum. 1999;42:861–70.
49. Sharma L, Hayes KW, Felson DT, Buchanan TS, Kirwan- Mellis G, Lou C, et al. Does laxity alter the relationship between strength and physical function in knee osteoarthritis? Arthritis Rheum. 1999;42:25–32.
50. Hortobágyi T, Westerkamp L, Beam S, et al. Altered hamstring-quadriceps muscle balance in patients with knee osteoarthritis. Clin Biomech. 2005;20(1):97-104
51. Ling SM, Conwit RA, Talbot L, et al. Electromyographic patterns suggest changes in motor unit physiology associated with early osteoarthritis of the knee. Osteoarthritis Cartilage. 2007;15(10):1134-40
52. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000; 10:361–74.
53. Salavati M, Akhbari B, Mohammadi F, Mazaheri M, Khorrami M. Knee injury and Osteoarthritis Outcome Score (KOOS); reliability and validity in competitive athletes after anterior cruciate ligament reconstruction. Osteoarthr Cartilage. 2011;19(4):406-10
54. Xie F, Li SC, Roos EM, et al. Cross-cultural adaptation and validation of Singapore English and Chinese versions of the Knee injury and Osteoarthritis Outcome Score (KOOS) in Asians with knee osteoarthritis in Singapore. Osteoarthr Cartilage. 2006;14(11):1098-103
55. Cheng X, Zhang T, Shan X, Wang J. Effect of posterior cruciate ligament creep on muscular co-activation around knee: a pilot study. J Electromyogr Kinesiol. 2014;24(2):271-6
56. Shino K, Horibe S, Ono K. The voluntarily evoked posterolateral drawer sign in the knee with posterolateral instability. Clin Orthop Relat Res. 1987; 215:179-86.
57. Konradsen L, Ravn JB. Prolonged peroneal reaction time in ankle instability. Int J Sports Med. 1991;12(3):290-2
58. Bozkurt M, Yilmaz E, Atlihan D, Tekdemir I, Havitçioğlu H, Günal I. The proximal tibiofibular joint: an anatomic study. Clin Orthop Relat Res. 2003; 406:136-40.
59. Yoon YS, Chai M, Shin DW. Football injuries at Asian tournaments. Am J Sports Med. 2004; 32(1 Suppl):36S-42S

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw