進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-3008201621593500
論文名稱(中文) 非手術型快速上顎擴張之力學評估
論文名稱(英文) Mechanical Effects of Nonsurgical Rapid Maxillary Expansion
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 傅晨軒
研究生(英文) Chen-Hsuan Fu
學號 P86021037
學位類別 碩士
語文別 英文
論文頁數 35頁
口試委員 指導教授-張志涵
共同指導教授-張禎容
口試委員-胡晉嘉
口試委員-蘇國誌
中文關鍵字 快速上顎擴張術  有限元素法  骨性擴張器  骨釘位置 
英文關鍵字 Non-surgical rapid maxillary expansion  Finite element method  Bone-borne expanders  Mini-screws positions 
學科別分類
中文摘要 快速上顎擴張為一種牙科齒列矯正方式,常用於骨性第三級咬合不正、前後牙錯咬、鼻腔狹窄或是上顎發育不完全。上顎擴張矯正包含骨釘植入與擴張器置入,並藉由擴張器之力量破壞骨縫結締組織,將上顎骨之顎正中骨縫撐開,進而以達到橫向擴張之效果。而現有研究鮮少對骨釘式擴張器評估,探討不同骨釘植入位置之影響。因此,本研究之目的為非手術型之快速上顎擴張術,在不同骨釘位置之力學評估,係以有限元素模擬,搭配病患資料追蹤與體外實驗,探討其生物力學之影響。
本研究包含三大部分:病患臨床資料追蹤、有限元素模擬與三維列印模型之體外實驗。患者為上顎發育不完全之十五歲女孩,資料來自國立成功大學附設醫院,口腔醫學部齒列矯正專科。有限元素模型來自於病患之電腦斷層掃描影響建立而成,包含牙齒、齒槽骨、微型骨釘、上顎骨與有材料填充之骨縫,並將四根骨釘對稱的植入上顎骨模型。邊界條件設定為給定位移量於骨釘,並將後方之枕骨大孔完全固定;原點設在顎正中骨縫後端;材料皆假設為線彈性、均質與等向性。
研究結果如下,在有限元素模擬中,隨著骨釘植入位置越接近牙齒,對牙齒擴張之影響越大;而當骨釘植入位置靠近骨縫處,對骨釘周圍的骨縫有明顯影響,但整體而言,骨縫的擴張與牙齒擴張是一致的,骨釘植入在牙齒周圍(Type B)皆擴張量最多,因此建議臨床做使用。在體外三維列印模型實驗,結果呈現出擴張器的位移量會趨近於骨釘的位移量。此外,骨縫材料是重要參數,不能單純假設為中空之縫隙。本研究提供未來研究之框架,藉由電腦輔助工程分析不同之骨釘植入位置,探討擴張器、骨釘與骨縫間之生物力學性質。
英文摘要 Rapid maxillary expansion is an orthodontic method to correct skeletal Class III, posterior cross-bite, narrow nasal cavity and maxillary width deficiency. Increasing maxillary arch circumference and posterior cross-bite may improve nasal respiration as well. The procedure produces forces to disrupt connective tissue and cause suture separation. There are few reports on evaluation of the effects of bone-borne expanders with or without surgical assistance rapid maxillary expansion. None of them was focused on the effects of bone-borne expanders with different position of mini-screws.
The purpose of this study is to study the mechanical effects of nonsurgical rapid maxillary expansion with different locations of mini-screws. It is using a finite difference model to study the applied incremental displacements and stress distribution of the craniofacial structures.
The study includes clinical follow up, finite element simulation and 3D printing model experiment. In this study, the patient is a 15-year old girl with maxillary transverse deficiency. She was subjected to the Bone-borne expander treatment from September, 2014 to March, 2015 in the Division of Orthodontics, Department of Stomatology of the National Cheng Kung University Hospital in Tainan, Taiwan.
The finite element model is based on the digitized geometry of the cone-bean computer tomography scan. It includes teeth, alveolar bone, maxillary plane, mini-screws and mid-palatal suture. Four mini-screws are symmetrically implanted at the maxillary. The boundary condition is mini-screws displacement and the foramen magnum is fixed. The 3D co-ordinates origin point is on the end of suture. All materials were considered to be linearly elastic, homogeneous and isotropic.
In the results, the mini-screws implanted near tooth significant influence the tooth displacement; The screws implanted near suture, the suture have expanded a partial. However, the whole suture expanding and tooth expanding is inconsistent. Screws implant near tooth, the type B, recommended for clinical application. In the experiment, we find the displacement of screw close to the expander when the screws and the expander are approaching separation. The material of mid-palatal suture is an important parameter; the suture is complex connective tissue and it cannot be simplified to a gap.
This research provides the framework of maxillary expansion for future study. It uses computer-aided engineering to analysis the mechanical effect of the expander, mid-palatal suture and mini-screws, and also gives suggestion of mini-screws position to the dentist.
論文目次 Chapter 1 Introduction 1
1-1 Rapid maxillary expansion 1
1-1-1 Mid-palatal suture 1
1-2 Rapid maxillary expansion with/without surgical assistance 2
1-3 Tooth-borne & Bone-borne expander 2
1-4 Aim 3
Chapter 2 Material and method 4
2-1 Flow chart 4
2-2 Patient selection 4
2-2-1 Procedure of orthodontics 5
2-3 Camera tracking system 5
2-4 The finite element model 7
2-4-1 Material properties 7
2-4-2 Boundary conditions 8
2-4-3 Mini-screws of four models 9
2-5 Three-dimensional printing Experiment 10
2-5-1 Personalize expander and expansion tracking 10
2-5-2 Finite element simulation 11
Chapter 3 Results 12
3-1 Clinical Observation of Follow Up 12
3-1-1 Photograph errors 14
3-2 Finite element simulation 15
3-2-1 Four models of different mini-screw positions 15
3-2-2 Deformation of finite element model 16
3-2-3 Deformation of four models 17
3-2-4 Suture expansion of four models 17
3-2-5 Teeth expansion of four models 21
Chapter 4 3D-Printing Experiment 23
4-1 Camera measuring displacements 23
4-1-1 The amount of expansion – Tooth 23
4-1-2 The amount of expansion - screws 24
4-2 Finite element simulation in 3DP experiment 26
4-2-1 The finite element model 26
4-2-2 Simulation and Experimental Comparison 27
4-2-3 3D-printing simulation compare patient simulation 28
Chapter 5 Discussion 29
5-1 Clinical data and patient follow up 29
5-2 3D-printing experiment design and discussion 29
5-3 Finite element model assumptions and limitations 29
5-4 Mini-screws influence 30
5-5 Clinical relevance 31
Chapter 6 Conclusion 32
Patient follow up 32
3D-printing experiment 32
Finite element simulation 32
Reference 33
Appendix 35
參考文獻 1. Angell, E.C.D.C., Treatment of irregularities of the permanent or adult teeth. . Dent Cosmos, 1860: p. 540–544.
2. Navya Ashok, N.K.S.V., V. V. Ajith, and Siby Gopinath, Effect of rapid maxillary expansion on sleep characteristics in children. Contemp Clin Dent. , 2014: p. 489–494.
3. Lagravere, M.O., et al., Transverse, vertical, and anteroposterior changes from bone-anchored maxillary expansion vs traditional rapid maxillary expansion: a randomized clinical trial. Am J Orthod Dentofacial Orthop, 2010. 137(3): p. 304 e1-12; discussion 304-5.
4. Zandi, M., A. Miresmaeili, and A. Heidari, Short-term skeletal and dental changes following bone-borne versus tooth-borne surgically assisted rapid maxillary expansion: a randomized clinical trial study. J Craniomaxillofac Surg, 2014. 42(7): p. 1190-5.
5. Romanyk D. L., Shim C., Liu S. S., Lagravere M. O., Major P. W.,
Carey J. P., Viscoelastic response of the midpalatal suture during maxillary expansion treatment.
6. E. Tanaka, Y. Miyawaki, M. Tanaka, M. Watanabe, K. Lee, R. del Pozo, K. Tanne, Effects of tensile forces on the expression of type III collagen in rat inter parietal suture.
7. MacGinnis, M., et al., The effects of micro-implant assisted rapid palatal expansion (MARPE) on the nasomaxillary complex--a finite element method (FEM) analysis. Prog Orthod, 2014. 15: p. 52.
8. Wehrbein, H., The mid-palatal suture in young adults. A radiological-histological investigation. The European Journal of Orthodontics, 2001. 23(2): p. 105-114.
9. Baldawa, R.S. and W.A. Bhad, Stress distribution analysis during an intermaxillary dysjunction: A 3-D FEM study of an adult human skull. Ann Maxillofac Surg, 2011. 1(1): p. 19-25.
10. Schauseil, M., et al., Density of the midpalatal suture after RME treatment - a retrospective comparative low-dose CT-study. Head Face Med, 2014. 10: p. 18.
11. Matteo Camporesi1*, L.F., Tiziana Doldo2 and Efisio Defraia1, Evaluation of mechanical properties of three
different screws for rapid maxillary expansion. BioMedical Engineering OnLine 2013: p. 12:128.
12. Lee, S.C., et al., Effect of bone-borne rapid maxillary expanders with and without surgical assistance on the craniofacial structures using finite element analysis. Am J Orthod Dentofacial Orthop, 2014. 145(5): p. 638-48.
13. Kim, K.Y., et al., Displacement and stress distribution of the maxillofacial complex during maxillary protraction with buccal versus palatal plates: finite element analysis. Eur J Orthod, 2015. 37(3): p. 275-83.
14. Ludwig, B., et al., Application of a new viscoelastic finite element method model and analysis of miniscrew-supported hybrid hyrax treatment. Am J Orthod Dentofacial Orthop, 2013. 143(3): p. 426-35.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw