進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-3008201615142200
論文名稱(中文) 探討粒線體DNA 缺陷與gelsolin 表現對癌症抗藥性的影 響
論文名稱(英文) A Study in the Effect of Mitochondrial DNA Deletion and Gelsolin Expression in Cancer Drug Resistance
校院名稱 成功大學
系所名稱(中) 口腔醫學研究所
系所名稱(英) Institute of Oral Medicine
學年度 104
學期 2
出版年 105
研究生(中文) 陳乃豪
研究生(英文) Nai-Hao Chen
學號 T46034028
學位類別 碩士
語文別 英文
論文頁數 72頁
口試委員 指導教授-謝達斌
口試委員-陳玉玲
口試委員-黃則達
中文關鍵字 白藜蘆醇  粒線體  DNA 缺陷  口腔癌  抗藥性  細胞毒殺 
英文關鍵字 Resveratrol  mitochondria  DNA deletion  oral cancer  drug resistance  cytotoxicity 
學科別分類
中文摘要 口腔鱗狀細胞癌在全球是十大癌症之一,而在台灣更是在十大癌症當中排行第七名。Cisplatin已知是一種含鉑的有效抗癌藥物之一,廣泛地應用在治療各個部位所發生的惡性腫瘤。然而,病人在進行化學治療時常會演發出抗藥性問題而導致治療過程失敗。關於腫瘤細胞對於Cisplatin產生抗藥性,在過去的研究中發現: 具有抗藥性的癌細胞,Gelsolin蛋白質的表現量相對來說是比較高的,而且會干擾Cisplatin促進細胞凋亡的效果。
粒線體中DNA的缺陷將會使細胞中reactive oxygen species(ROS)濃度增加,並促使正常細胞趨向癌化。腫瘤細胞被發現和正常細胞相比,粒線體DNA具有較多的突變與缺失。近期的研究也指出,腫瘤細胞中粒線體的突變與抗藥性具有密切關係。Resveratrol (RES)與tetrahydroxystilbene glucoside (THSG)都是藥草萃取物,擁有相似的化學結構以及抗氧化特性。由於氧化壓力被視為與腫瘤的生成有關係,因此可以透過RES與THSG的抗氧化特性用以預防和治療癌症。
在本篇研究當中,我們假設粒線體DNA 4977-bp缺陷會影響腫瘤細胞對於化療藥物的敏感性,而RES及THSG在這關係中扮演著重要的角色。我們的結果顯示,具有抗藥性的鼻咽癌細胞株HONE1-CIS6和不具抗藥性的組別HONE-1相比,粒線體DNA 4977-bp缺陷的比例較高,拷貝數較少。而在RES作用後,不論在敏感性或抗藥性的細胞株中,其拷貝數都有明顯的增加,但對4977-bp缺陷的表現則沒有太大的差異。我們也將這兩株細胞株以RES與Cisplatin共同處理後,發現會改善細胞毒殺的效果,促使癌細胞進行細胞凋亡。藉由這些發現,我們期待未來能夠利用天然藥物的特性,發展出安全而有效的藥物。
英文摘要 Oral squamous cell carcinoma is one of the top ten malignancies in the world. According to some reports in Taiwan, oral cancer is ranked seventh leading cause of cancer death. To cure cancer, cisplatin (CDDP) is one of the most potent anti-cancer agents in clinical use for a wide variety of solid tumors. However, chemoresistance is a problem that lowers the therapeutic efficiency and leads to treatment failure. In previous studies, the results indicated that gelsolin (GSN) expression levels were positively associated with chemoresistance in vitro and in vivo. In chemoresistant cells, GSN was highly expressed, and CDDP had no significant effect on inducing apoptosis.
Mitochondrial DNA (mtDNA) defect is known to confer accumulation of intracellular reactive oxygen species (ROS) that contributes the transformation of normal cells to malignant state. Recent study also showed the association between mitochondria mutation and chemoresistant phenotype. Resveratrol (RES) and tetrahydroxystilbene glucoside (THSG) are herbal extract of similar chemical structure known for prominent antioxidant activity. As oxidative stress has been demonstrated to contribute carcinogenesis and tumor progression, RES and THSG have been investigated for their roles in cancer prevention and adjuvant therapy.
In this study, we hypothesize the level of mtDNA 4977-bp deletion would affect chemosensitivity of tumor cells and RES or THSG may play certain role in this regard. Our results showed that 4977-bp deletion was higher in chemoresistant cancer cell (HONE1-CIS6) than their paired chemosensitive line (HONE-1). The total copy number of mtDNA was lower in HONE1-CIS6 than HONE-1. RES treatment significantly increase mtDNA copy number in both cancer cell lines while no significant effect was observed in 4997-bp deletion. The cell viability in two cell lines of RES co-treatment with CDDP was found that there had a great cytotoxic effect to induce apoptosis and enhance the level of apoptotic-related proteins. In the future, we want to dig deeper into the mechanisms of cytotoxic operation and predict the pathway more clearly to confirm our hypothesis.
論文目次 Abstract I
中文摘要 III
Acknowledgements V
Contents VI
1. Introduction 1
1.1 Cancer 1
1.1.1 Cancer 1
1.1.2 Therapy of cancer 1
1.1.3 Head and neck cancer 3
1.1.4 Therapy of head and neck cancer 4
1.2 Chemotherapeutic drugs 4
1.2.1 Cisplatin 4
1.2.2 Chemotherapy and cell death 5
1.2.3 Drug resistance in cancer 6
1.2.4 Drug resistance in head and neck cancer 7
1.3 Mitochondria and mitochondrial DNA 8
1.3.1 Mitochondria 8
1.3.2 Mitochondrial DNA 8
1.3.3 Dysfunction of mitochondria in cancer 9
1.3.4 Mitochondrial DNA copy number 10
1.3.5 Mitochondrial DNA 4977-bp deletion mutations 10
1.4 Reactive oxygen species in cancer 11
1.5 Herbal drug extracts 12
1.5.1 Therapeutic applications of herbal medicines in cancer 12
1.5.2 Resveratrol and tetrahydroxystilbene glucoside 13
1.6 Rationale 14
2. Materials and Methods 16
2.1 Cell Lines and Cell Culture 16
2.1.1 Cell Culture (Subculture of Adherent Cells) 16
2.1.2 Freezing Cells 17
2.1.3 Thawing Frozen Cells 19
2.1.4 Counting Cells 19
2.2 DNA Extraction 20
2.3 Nucleic Acid Quantitation 21
2.4 Quantitative Real-Time PCR (Polymerase Chain Reaction) 22
2.5 Protein Sample Preparation and Protein Isolation 24
2.6 Protein Assay 25
2.7 Western Blot 26
2.7.1 SDS-Polyacrylamide Gel Electrophoresis 26
2.7.2 Electrotransfer 27
2.7.3 Antibody Staining (Immnobloting) 28
2.8 MTT Assay 30
2.9 Functional Mitochondrial Activity Assay 31
2.10 Cellular Reactive Oxygen Species Detection Assay 32
2.10.1 ROS Staining 32
2.10.2 Flow Cytometry 33
3. Results 34
3.1 Analysis of the mitochondrial profiles in HONE-1 and HONE1-CIS6 34
3.2 Mitochondrial copy number and 4977-bp deletion in HONE-1 and HONE1-CIS6 treatment with CDDP 34
3.3 Mitochondrial copy number and 4977-bp deletion in HONE-1 and HONE1-CIS6 after treatment with RES 35
3.4 Cytotoxicity of THSG and RES in HNC cell lines, HONE-1 and HONE1-CIS6 compared with normal cell lines 36
3.5 Cytotoxicity of RES in HNC cell lines, HONE-1 and HONE1-CIS6 after 24, 48 and 72hrs treatment 36
3.6 Cytotoxicity of RES with CDDP co-treatment in chemosensitive cancer cell line HONE-1 after 24, 48 and 72hrs treatment 37
3.7 Cytotoxicity of RES with CDDP co-treatment in chemoresistant cancer cell line HONE1-CIS6 after 24, 48 and 72hrs treatment 38
3.8 Expression level of protein activation or downregulation in HNC cell lines, HONE-1 and HONE1-CIS6 38
3.9 Measurement of intracellular ROS concentration in HNC cell lines, HONE-1 and HONE1-CIS6 39
4. Discussion 41
5. Summary 48
6. Reference 49
7. Figures and Legends 57
Figure 1: Analysis of the mitochondrial profiles in HONE-1 and HONE1-CIS6. 57
Figure 2: Mitochondrial copy number and 4977-bp deletion in HONE-1 and HONE1-CIS6 treatment with CDDP. 59
Figure 3: Mitochondrial copy number and 4977-bp deletion in HONE-1 and HONE1-CIS6 after treatment with RES. 60
Figure 4: Cytotoxicity of THSG and RES in HNC cell lines, HONE-1 and HONE1-CIS6 compared with normal cell lines. 61
Figure 5: Cytotoxicity of RES in HNC cell lines, HONE-1 and HONE1-CIS6 after 24, 48 and 72hrs treatment. 62
Figure 6: Cytotoxicity of RES with CDDP co-treatment in chemosensitive cancer cell line HONE-1 after 24, 48 and 72hrs treatment. 63
Figure 7: Cytotoxicity of RES with CDDP co-treatment in chemoresistant cancer cell line HONE1-CIS6 after 24, 48 and 72hrs treatment. 64
Figure 8: Expression level of protein activation or downregulation in HNC cell lines, HONE-1 and HONE1-CIS6. 65
Figure 9: Measurement of intracellular ROS concentration in HNC cell lines, HONE-1 and HONE1-CIS6. Intracellular ROS concentrations were quantified with DCFDA. 68
8. Appendix 69
Appendix 1: THSG Modulates mtDNA Copy Number/4977-bp Deletion in Cybrid Cells containing defective Mitochondrial DNA. 69
Appendix 2: Cytotoxicity of THSG in Normal Epithelial Cell Lines, HUVEC and VERO after 24, 48 and 72hrs Treatment. 70
Appendix 3: Cytotoxicity of RES in Normal Epithelial Cell Lines, HUVEC and VERO after 24, 48 and 72hrs Treatment. 71
Appendix 4: Cytotoxicity of THSG in HNC Cell Lines, HONE-1 and HONE1-CIS6 after 24, 48 and 72hrs Treatment. 72

參考文獻 1 Defining Cancer. National Cancer Institute (2014).
2 Cancer Fact sheet N°297. World Health Organization (2014).
3 Douglas, R. H. & Umphenour, N. Endocrine abnormalities and hormonal therapy. The Veterinary clinics of North America. Equine practice 8, 237-249 (1992).
4 Osborne, C. K. Tamoxifen in the treatment of breast cancer. The New England journal of medicine 339, 1609-1618, doi:10.1056/NEJM199811263392207 (1998).
5 Stenson, K. M. Epidemiology and risk factors for head and neck cancer. UpToDate (2016).
6 Nainani, P., Paliwal, A., Nagpal, N. & Agrawal, M. Sex hormones in gender-specific risk for head and neck cancer: A review. Journal of International Society of Preventive & Community Dentistry 4, S1-4, doi:10.4103/2231-0762.144557 (2014).
7 Titcomb, C. P., Jr. High incidence of nasopharyngeal carcinoma in Asia. Journal of insurance medicine 33, 235-238 (2001).
8 Kao, S. Y. & Lim, E. An overview of detection and screening of oral cancer in Taiwan. The Chinese journal of dental research : the official journal of the Scientific Section of the Chinese Stomatological Association 18, 7-12 (2015).
9 Bonner, J. A. et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. The New England journal of medicine 354, 567-578, doi:10.1056/NEJMoa053422 (2006).
10 Magrini, S. M. et al. Cetuximab and Radiotherapy Versus Cisplatin and Radiotherapy for Locally Advanced Head and Neck Cancer: A Randomized Phase II Trial. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 34, 427-435, doi:10.1200/JCO.2015.63.1671 (2016).
11 Naito, Y. et al. Concurrent chemoradiotherapy with cisplatin and vinorelbine for stage III non-small cell lung cancer. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer 3, 617-622, doi:10.1097/JTO.0b013e3181753b38 (2008).
12 Lee, K. C. et al. Prospective pilot study of consolidation chemotherapy with docetaxel and cisplatin after concurrent chemoradiotherapy for advanced head and neck cancer. International journal of radiation oncology, biology, physics 71, 187-191, doi:10.1016/j.ijrobp.2007.09.023 (2008).
13 De Lena, M. et al. Paclitaxel, cisplatin and lonidamine in advanced ovarian cancer. A phase II study. European journal of cancer 37, 364-368 (2001).
14 Als, A. B., Sengelov, L. & Von Der Maase, H. Gemcitabine and cisplatin in locally advanced and metastatic bladder cancer; 3- or 4-week schedule? Acta oncologica 47, 110-119, doi:10.1080/02841860701499382 (2008).
15 Rose, P. G. et al. Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. The New England journal of medicine 340, 1144-1153, doi:10.1056/NEJM199904153401502 (1999).
16 Hanna, N. & Einhorn, L. H. Testicular cancer: a reflection on 50 years of discovery. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 32, 3085-3092, doi:10.1200/JCO.2014.56.0896 (2014).
17 Cherra, S. J., 3rd et al. Regulation of the autophagy protein LC3 by phosphorylation. The Journal of cell biology 190, 533-539, doi:10.1083/jcb.201002108 (2010).
18 Elmore, S. Apoptosis: a review of programmed cell death. Toxicologic pathology 35, 495-516, doi:10.1080/01926230701320337 (2007).
19 Igney, F. H. & Krammer, P. H. Death and anti-death: tumour resistance to apoptosis. Nature reviews. Cancer 2, 277-288, doi:10.1038/nrc776 (2002).
20 Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British journal of cancer 26, 239-257 (1972).
21 Shen, D. W., Pouliot, L. M., Hall, M. D. & Gottesman, M. M. Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacological reviews 64, 706-721, doi:10.1124/pr.111.005637 (2012).
22 Yin, H. L. & Stossel, T. P. Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature 281, 583-586 (1979).
23 Sun, H. Q., Yamamoto, M., Mejillano, M. & Yin, H. L. Gelsolin, a multifunctional actin regulatory protein. The Journal of biological chemistry 274, 33179-33182 (1999).
24 Wang, P. W. et al. Gelsolin regulates cisplatin sensitivity in human head-and-neck cancer. International journal of cancer 135, 2760-2769, doi:10.1002/ijc.28928 (2014).
25 Lee, H. C., Chang, C. M. & Chi, C. W. Somatic mutations of mitochondrial DNA in aging and cancer progression. Ageing research reviews 9 Suppl 1, S47-58, doi:10.1016/j.arr.2010.08.009 (2010).
26 Gatenby RA, G. R. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 4, 891-899 (2004).
27 Kim JW, D. C. Cancer's molecular sweet tooth and the Warburg effect. Cancer Res 66, 8927-8930 (2006).
28 Lee HC, Y. P., Lin JC, Wu CC, Chen CY, Wu CW, Chi CW, Tam TN, Wei YH. Mitochondrial genome instability and mtDNA depletion in human cancers. Ann N Y Acad Sci 1042, 109-122 (2005).
29 Brandon M, B. P., Wallace DC. Mitochondrial mutations in cancer. Oncogene 25, 4647-4662 (2006).
30 Juan Wang, Y.-y. L. Mitochondrial DNA 4977-bp deletion correlated with reactive oxygen species production and manganese superoxide dismutase expression in gastric tumor cells. Chinese medical journal 122, 431-436 (2009).
31 Mizutani S, M. Y., Shidara Y, Asoh S, Tokunaga A, Tajiri T, Ohta S. Mutations in the mitochondrial genome confer resistance of cancer cells to anticancer drugs. Cancer Sci. 100, 1680-1687 (2009).
32 Reznik E, M. M., Şenbabaoğlu Y, Riaz N, Sarungbam J, Tickoo SK, Al-Ahmadie HA, Lee W, Seshan VE, Hakimi AA, Sander C. Mitochondrial DNA copy number variation across human cancers. Elife. 5, doi:10.7554/eLife.10769. (2016).
33 Futyma, K. et al. The prevalence of mtDNA4977 deletion in primary human endometrial carcinomas and matched control samples. Oncology reports 20, 683-688 (2008).
34 Pang, C. Y., Lee, H. C., Yang, J. H. & Wei, Y. H. Human skin mitochondrial DNA deletions associated with light exposure. Archives of biochemistry and biophysics 312, 534-538, doi:10.1006/abbi.1994.1342 (1994).
35 Lee, H. C. et al. Accumulation of mitochondrial DNA deletions in human oral tissues -- effects of betel quid chewing and oral cancer. Mutation research 493, 67-74 (2001).
36 Dimberg, J. et al. Common 4977 bp deletion and novel alterations in mitochondrial DNA in Vietnamese patients with breast cancer. SpringerPlus 4, 58, doi:10.1186/s40064-015-0843-8 (2015).
37 Nie, H. et al. Mitochondrial common deletion, a potential biomarker for cancer occurrence, is selected against in cancer background: a meta-analysis of 38 studies. PloS one 8, e67953, doi:10.1371/journal.pone.0067953 (2013).
38 Kryston, T. B., Georgiev, A. B., Pissis, P. & Georgakilas, A. G. Role of oxidative stress and DNA damage in human carcinogenesis. Mutation research 711, 193-201, doi:10.1016/j.mrfmmm.2010.12.016 (2011).
39 Liou, G. Y. & Storz, P. Reactive oxygen species in cancer. Free radical research 44, 479-496, doi:10.3109/10715761003667554 (2010).
40 Kara, M., Tatar, A., Borekci, B., Dagli, F. & Oztas, S. Mitochondrial DNA 4977 bp Deletion in Chronic Cervicitis and Cervix Cancers. Balkan journal of medical genetics : BJMG 15, 25-29, doi:10.2478/v10034-012-0004-0 (2012).
41 Mei, H. et al. Reduced mtDNA copy number increases the sensitivity of tumor cells to chemotherapeutic drugs. Cell death & disease 6, e1710, doi:10.1038/cddis.2015.78 (2015).
42 Marullo, R. et al. Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PloS one 8, e81162, doi:10.1371/journal.pone.0081162 (2013).
43 Tochhawng, L. et al. Gelsolin-Cu/ZnSOD interaction alters intracellular reactive oxygen species levels to promote cancer cell invasion. Oncotarget, doi:10.18632/oncotarget.10451 (2016).
44 Yin, S. Y., Wei, W. C., Jian, F. Y. & Yang, N. S. Therapeutic applications of herbal medicines for cancer patients. Evidence-based complementary and alternative medicine : eCAM 2013, 302426, doi:10.1155/2013/302426 (2013).
45 Ingvild Paur, M. H. C., Bente Lise Halvorsen, and Rune Blomhoff. Chapter 2Antioxidants in Herbs and Spices
Roles in Oxidative Stress and Redox Signaling. Herbal Medicine: Biomolecular and Clinical Aspects. 2nd edition. (2011).
46 Saintot, M. et al. Oxidant-antioxidant status in relation to survival among breast cancer patients. International journal of cancer 97, 574-579 (2002).
47 Zhang, S. H., Wang, W. Q. & Wang, J. L. Protective effect of tetrahydroxystilbene glucoside on cardiotoxicity induced by doxorubicin in vitro and in vivo. Acta pharmacologica Sinica 30, 1479-1487, doi:10.1038/aps.2009.144 (2009).
48 Wang, X., Zhao, L., Han, T., Chen, S. & Wang, J. Protective effects of 2,3,5,4'-tetrahydroxystilbene-2-O-beta-d-glucoside, an active component of Polygonum multiflorum Thunb, on experimental colitis in mice. European journal of pharmacology 578, 339-348, doi:10.1016/j.ejphar.2007.09.013 (2008).
49 CHU Jin, Y. C.-f., LI Lin. Effects of stilbene-glycoside on learning and memory function and free radicals metabolism in dementia model mice. Chinese journal of rehabilitation theory and practice 9, 643-645 (2003).
50 Liu, L., Zhao, L., Li, Y.L., Zhang, L., Ye, C.F., Li, L. Protective effect of 2,3,5, 4′-tetrahydroxystilbene-2-b-O-D-glucoside on hippocampal neurons in dementia rats induced by chronic cerebral ischemia. Chin. J. Pharm., 354-357 (2006).
51 Zhang, Y. Z., Shen, J. F., Xu, J. Y., Xiao, J. H. & Wang, J. L. Inhibitory effects of 2,3,5,4'-tetrahydroxystilbene-2-O-beta-D-glucoside on experimental inflammation and cyclooxygenase 2 activity. Journal of Asian natural products research 9, 355-363, doi:10.1080/10286020600727772 (2007).
52 Xie, Q. et al. Resveratrol-4-O-D-(2'-galloyl)-glucopyranoside isolated from Polygonum cuspidatum exhibits anti-hepatocellular carcinoma viability by inducing apoptosis via the JNK and ERK pathway. Molecules 19, 1592-1602, doi:10.3390/molecules19021592 (2014).
53 Joe, A. K. et al. Resveratrol induces growth inhibition, S-phase arrest, apoptosis, and changes in biomarker expression in several human cancer cell lines. Clinical cancer research : an official journal of the American Association for Cancer Research 8, 893-903 (2002).
54 Halicka, H. D. et al. Potential anti-aging agents suppress the level of constitutive mTOR- and DNA damage- signaling. Aging 4, 952-965, doi:10.18632/aging.100521 (2012).
55 Lin, H. Y., Glinsky, G. V., Mousa, S. A. & Davis, P. J. Thyroid hormone and anti-apoptosis in tumor cells. Oncotarget 6, 14735-14743, doi:10.18632/oncotarget.4023 (2015).
56 Lin, H. Y. et al. Resveratrol is pro-apoptotic and thyroid hormone is anti-apoptotic in glioma cells: both actions are integrin and ERK mediated. Carcinogenesis 29, 62-69, doi:10.1093/carcin/bgm239 (2008).
57 Lin, H. Y. et al. Mechanisms of ceramide-induced COX-2-dependent apoptosis in human ovarian cancer OVCAR-3 cells partially overlapped with resveratrol. Journal of cellular biochemistry 114, 1940-1954, doi:10.1002/jcb.24539 (2013).
58 Lin, H. Y. et al. Resveratrol causes COX-2- and p53-dependent apoptosis in head and neck squamous cell cancer cells. Journal of cellular biochemistry 104, 2131-2142, doi:10.1002/jcb.21772 (2008).
59 Tang, H. Y. et al. Resveratrol-induced cyclooxygenase-2 facilitates p53-dependent apoptosis in human breast cancer cells. Molecular cancer therapeutics 5, 2034-2042, doi:10.1158/1535-7163.MCT-06-0216 (2006).
60 Ferraresi, R. et al. Resistance of mtDNA-depleted cells to apoptosis. Cytometry. Part A : the journal of the International Society for Analytical Cytology 73, 528-537, doi:10.1002/cyto.a.20544 (2008).
61 Lee, H. C. & Wei, Y. H. Mitochondrial DNA instability and metabolic shift in human cancers. International journal of molecular sciences 10, 674-701, doi:10.3390/ijms10020674 (2009).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-08-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-08-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw