進階搜尋


下載電子全文  
系統識別號 U0026-3008201610480500
論文名稱(中文) 利用低成本GNSS/IMU浮標監測海洋訊號
論文名稱(英文) Monitoring ocean signals using low-cost GNSS/IMU buoys
校院名稱 成功大學
系所名稱(中) 測量及空間資訊學系
系所名稱(英) Department of Geomatics
學年度 104
學期 2
出版年 105
研究生(中文) 黃昱倫
研究生(英文) Yu-Lun Huang
學號 P66034133
學位類別 碩士
語文別 中文
論文頁數 152頁
口試委員 指導教授-郭重言
口試委員-林立青
口試委員-蕭宇伸
口試委員-鄭凱謙
中文關鍵字 全球導航衛星系統  慣性量測單元  浮標  海水面 
英文關鍵字 Global Navigation Satellite System (GNSS)  Inertial Measurement Unit (IMU)  Buoy  Sea surface 
學科別分類
中文摘要 海洋中海水面變化包含不同頻率訊號,例如波浪、海嘯、氣象海嘯、海潮、風暴潮以及洋流等,這些現象可能會導致沿岸地區的居住環境受到影響或遭受破壞,直接或間接地影響人類生命與財產安全,因此準確監測高頻海洋訊號成為一個重要的研究課題。現今海水面監測技術發展日趨成熟,海水面高度變化常以驗潮站、衛星測高、傳統加速度浮標來進行觀測,然而驗潮站資料含有地表變動訊號,衛星測高在沿岸地區觀測精度較低,傳統加速度浮標造價昂貴、體積較大與受到低頻雜訊的影響,且上述三者皆無法量測多頻海水面變化訊號。本研究引入全球導航衛星系統(Global Navigation Satellite System, GNSS)浮標,透過高頻GNSS觀測量來計算海水面變化,浮標另裝載慣性量測單元(Inertial Measurement Unit, IMU)不間斷地接收加速度、角速度等資料,提供GNSS訊號遮蔽與浮標傾斜之改正。實驗時,透過岸上架設固定站,利用不同的GNSS解算軟體進行差分定位解算,做為浮標定位結果之參照,並搭配International GNSS Service (IGS)所提供的精密星曆進行精密單點定位解算;浮標觀測水面變化以整合GNSS差分定位或精密單點定位成果與IMU觀測量求得,並與現地波高計、驗潮站以及港外波浪觀測站資料進行比較。本研究於兩處進行實驗測試,首先於成功大學水工試驗中型斷面水槽內進行,利用造波機產生頻率固定的規則波,將不同儀器所觀測的水面變化與波高計資料相比較,其成果顯示GNSS、IMU以及智慧型手機皆可觀測規則波的振幅與頻率。另一處為台南安平港,將GNSS所測得的海水面資料與安平驗潮站資料相比較,計算兩者間差值的標準差(Standard Deviation, STD),結果顯示差分定位精度約為1公分左右等級,精密單點定位精度最佳可達3公分左右;同時間利用GNSS、IMU以及智慧型手機觀測資料進行能量頻譜分析與計算有效波高,其成果顯示GNSS與IMU可有效觀測實際的波浪頻率,智慧型手機則否,且三者皆無法有效偵測實際波高變化的趨勢。另一方面,由於實驗地點皆位處港內,其海洋環境單純、浮標傾斜角度較小,且浮標本身高度很低(GNSS天線盤距離水面約20公分),導致整合GNSS與IMU觀測量對於整體海水面觀測結果的提升相當有限。
英文摘要 In this study, we are devoted to developing buoys containing a Global Navigation Satellite System (GNSS) receiver and an Inertial Measurement Unit (IMU). GNSS observations can be used for positioning and a small, low-cost and self-assembly autonomous IMU, independently collecting continuous acceleration and angular velocity data, could provide positions and tilts of the moving buoy. In addition, we also integrated Differential GNSS (DGNSS) or Precise Point Positioning (PPP) solutions with IMU data to calculate the buoy positions, and then evaluate the performance by comparing with in situ wave gauge, tide gauge or sea wave buoy observations. In the study, the experiments were conducted in two places. The first one was performed in the tank of NCKU Tainan Hydraulics Laboratory. The results show that GNSS and IMU measurements both can detect the frequencies and amplitudes of the simulated regular wave heights, and the accuracy derived from the comparison with the wave gauge can reach cm level. The other experiment was conducted in the Anping Harbor, Tainan. The results illustrate that the GNSS/IMU buoy has an excellent ability to observe sea level changes compared with Anping tide gauge records and the observed wave frequencies agree well with those from sea wave buoy data, but the amplitude is not similar. The accuracy of DGNSS derived by GAMIT/TRACK or GrafNav software and DGNSS/IMU integration solutions can reach 1 cm compared with the Anping tide gauge. The solutions of PPP derived by GIPSY-OASIS or GrafNav software and PPP/IMU integration solutions can reach about 3~7 cm.
論文目次 中文摘要 I
ABSTRACT III
誌謝 VII
目錄 VIII
表目錄 XI
圖目錄 XIII
第一章 緒論 1
§1-1 研究動機與目的 1
§1-2 論文架構 7
第二章 GNSS定位 8
§2-1 GPS基本原理 9
§2-2 GPS觀測量 9
§2-2-1 虛擬距離觀測量 10
§2-2-2 載波相位觀測量 12
§2-3 GPS定位方法 13
§2-3-1 絕對定位 13
§2-3-2 相對定位 14
§2-3-3 地面一次差分 14
§2-3-4 空中一次差分 15
§2-3-5 二次差分 16
§2-3-6 三次差分 17
§2-4 精密單點定位(Precise Point Positioning) 18

第三章 GNSS/IMU整合 22
§3-1 慣性導航系統(Inertial Navigation System, INS) 22
§3-1-1 坐標框架 24
§3-1-1-1 地心地固坐標框架(The earth frame, e-frame) 24
§3-1-1-2 當地水平坐標框架(The local level frame, l-frame) 25
§3-1-1-3 載體坐標框架(The vehicle frame, v-frame) 26
§3-1-1-4 感測器坐標框架(The body frame, b-frame) 26
§3-1-1-5 導航坐標框架(The navigation frame, n-frame) 26
§3-1-2 坐標框架轉換 27
§3-1-2-1 尤拉角(Euler Angle) 27
§3-1-2-2 方向餘弦矩陣(Direction Cosine Matrix, DCM) 28
§3-1-2-3 四元素(Quaternion) 29
§3-2 GNSS/INS整合系統介紹 31
§3-2-1 擴展式卡曼濾波器 33
§3-2-2 GNSS/INS整合系統結構 34
§3-2-3 軟體層面之整合 35
第四章 GNSS/IMU浮標與解算軟體 36
§4-1 GNSS浮標發展與架構 36
§4-2 GNSS與GNSS/IMU整合解之解算軟體 39
§4-2-1 GAMIT/GLOBK 39
§4-2-2 GrafNav 40
§4-2-3 GIPSY-OASIS 41
§4-2-4 POINTER 41
§4-3 GNSS、IMU與智慧型手機 42
§4-4 驗潮站 44
§4-5 能量頻譜分析與有效波高計算 46
§4-6 浮標傾斜角改正 49
第五章 實驗成果與分析 51
§5-1 研究實驗場景 51
§5-2 資料處理流程 56
§5-3 成功大學水工試驗所水槽測試成果 59
§5-3-1 大浮標測試成果 59
§5-3-2 小浮標測試成果 74
§5-4 安平港實測成果 90
§5-4-1 海水面高度變化時序圖 90
§5-4-2 能量頻譜分析 95
§5-4-3 有效波高計算 106
§5-5 安平港實測之GNSS/IMU整合解成果 117
§5-5-1 海水面高度變化時序圖 117
§5-5-2 能量頻譜分析 119
§5-5-3 有效波高計算 121
第六章 結論與建議 124
§6-1 結論 124
§6-2 未來建議 125
參考文獻 127
附錄 水槽測試GNSS時序圖&能量頻譜圖成果 133
參考文獻 1. 中央氣象局全球資訊網,http://www.cwb.gov.tw/。

2. 內政部地政司衛星測量中心,http://gps.moi.gov.tw/。

3. 王錫祺,台灣海域JASON-1 測高衛星的絕對率定與成果,國立中正大學地震研究所碩士論文,嘉義,2008。

4. 李孟霖,運用潮位模式進行水深測量之潮位修正研究,國立中山大學海洋環境及工程研究所碩士論文,高雄,2007。

5. 邱冠維,利用精密單點定位進行GPS浮標近即時精密單點定位,國立成功大學測量及空間資訊研究所碩士論文,台南,2009。

6. 林芮菁,利用GPS浮標監測海洋訊號:氣象海嘯與有效波高,國立成功大學測量及空間資訊研究所碩士論文,台南,2012。

7. 胡智祐,發展低成本緊耦合式INS/GPS整合無縫車用導航系統之研究,國立成功大學測量及空間資訊研究所碩士論文,台南,2009。

8. 姚冠宇,適應性卡曼濾波器於緊耦合架構INS/GPS整合系統之研究,國立成功大學測量及空間資訊研究所碩士論文,台南,2010。

9. 張育瑋,GPS量測波浪之研究。國立成功大學水利及海洋工程研究所碩 士論文,台南,2007。

10. 郭力豪,台灣沿岸氣象海嘯特性之初步研究,國立交通大學土木工程研究所碩士論文,新竹,2009。

11. 華碩官方網站,https://www.asus.com/tw/。

12. 曾清涼、儲慶美,GPS衛星測量原理與應用,第二版,國立成功大學衛星資訊研究中心,台南,1999。

13. 楊名、江凱偉,97年度全球導航衛星系統(GNSS)資料聯合處理技術期末報告,內政部國土測繪中心,2009。

14. 楊名,衛星定位與網路RTK發展趨勢與未來方向,e-GPS測量技術與成果品質管理研討會,高雄,2013。

15. 羅貽騂,利用UKF發展INS/GPS 整合式定位演算法之評估,國立成功大學測量及空間資訊研究所碩士論文,台南,2008。

16. Abidin, H. Z., Some aspects of on-the-fly ambiguity resolution. Proceedings of the Sixth Intermational Geodetic Symposium on Satellite Positioning, pp.660-669, 1992.

17. Abdel-Salam, M., Gao, Y. and Shen, X., Analyzing the performance characteristics of a precise point positioning system. Proceedings of the ION GPS-2002, Oregon Convention Centre, Portland, Oregon, USA, September 24-27, 2002.

18. AVISO, http://aviso.altimetry.fr/gallery/, Cnes, CLS.

19. Bucy, R.S. and Senne, K.D., Digital synthesis of non-linear filters. Automatica, vol. 7, pp. 287, 1971.

20. Brown, R.G. and Hwang, P.Y.C., Introduction to Random Signals and Applied Kalman Filtering. Second edition, John Wiley & Sons, Inc., 1992.

21. Born, G. H, Parke, M. E., Axelrad, P., Gold, K. L., Johnson, J., Key, K. W. and Kubitschek, D. G, Calibration of TOPEX Altimeter using GPS Buoy. Journal of Geophysical Research, Vol.99, pp.24517-24526, 1994.

22. Chiang, K. W., INS/GPS Integration Using Neural Networks for Land Vehicular Navigation Applications. Department of Geomatics Engineering, the University of Calgary, Calgary, Canada, 2004.

23. Cheng, K., GPS Buoy Campaigns for Vertical Datum Improvement and Radar Altimeter Calibration. OSU Report No.470, Geodetic Science and Surveying in the Department of Civil and Environmental Engineering and Geodetic Science, the Ohio State University, Columbus, Ohio, USA, 2004.

24. Cheng, K., Analysis of Water Level Measurements Using GPS. Ph.D. dissertation, the Ohio State University, Columbus, Ohio, USA, 2005.

25. Cheng, K., Kuo, C. Y., Shum, C. K., Niu, X., Li, R. and Bedford, K. W., Accurate linking of Lake Erie water level with shoreline datum using GPS buoy and satellite altimetry. Terrestrial Atmospheric and Oceanic Sciences, 19, pp. 53-62, 2008.

26. El-Sheimy, N., Inertial techniques and INS/GPS Integration. Lecture Notes ENGO 623, Department of Geomatics Engineering, the University of Calgary, Calgary, Canada, 2004.

27. Grewal, M.S., Weill, L.R., and Andrews, A.P., Global Positioning Systems, Inertial Navigation, and Integration. John Wiley & Sons, Inc, 2001.

28. Gao, Y., Abdel-Salam, M., Chen, K. and Wojciechowski, A., Point Real-Time Kinematic Positioning. Proceedings of the International Association of Geodesy IAG General Assembly, Sapporo, Japan, 2003.

29. Groves, P. D., Principles of GNSS, Inertial, and Multi-sensor Integrated Navigation Systems. Artech House Publishers, 2007.

30. GOOGLE EARTH, http://www.google.com/earth/index.html.
Hein, G. W., Landau, H. and Blomenhofer, H., Determination of Instantaneous Sea Surface, Wave Heights, and Ocean Currents Using Satellite Observations of the Global Positioning System. Marine Geodesy, Vol.14, pp.217-224, 1990.

31. Huang, M. C., Time domain simulation of data buoy motion. Proceedings National Science Council ROC(A), Vol. 22, 6, pp. 820-830, 1998.

32. Héroux, P., Kouba, J., Collins, P. and Lahaye, F., GPS carrier-phase point positioning with precise orbit products. Proceedings of the KIS 2001, Banff, Alberta, Canada, June 5-8, 2001.

33. Hirata, K., Satake, K., Tanioka, Y., Kuragano, T., Hasegawa, Y., Hayashi, Y. and Hamada, N., The 2004 Indian Ocean tsunami: Tsunami Source Model from Satellite Altimetry. Earth Planets Space, Vol.58, pp.195–201, 2006.

34. Herbers, T. H. C., Jessen, P. F., Janssen, T. T., Colbert, D. B. and MacMahan, J. H., Observing ocean surface waves with gps-tracked buoys. Journal of Atmospheric and Oceanic Technology, 29, pp.944-959, 2012.

35. Herring, T. A., King, R. W. and McClusky, S. C., Introduction to GAMIT/GLOBK. Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, 2015.

36. International GNSS Service, http://igscb.jpl.nasa.gov/, 2009.

37. Joodaki, G., Nahavandchi, H. and Cheng, K., Ocean wave measurement using GPS buoys. Journal of Geodetic Science, 3(3), 163-172, 2013.

38. Jet Propulsion Laboratory Group, GIPSY-OASIS User Guide. California, USA, 2015.

39. Jingle News services. http://jnsinc.blogspot.tw/.

40. Kalman, R. E., A New Approach to Linear Filtering and Prediction Problem. ASME Journal of Basic Engineering, Vol.82, pp. 34-35, 1960.

41. Kelecy, T. M., Born, G. H., Parke, M. E. and Rocken, C., Precise Mean Sea Level Measurements using the Global Positioning System. Journal of Geophysical Research, Vol.99, pp.7951-7959, 1994.

42. Kato, T., Terada, Y., Kinoshita, M., Kakimoto, H., Isshiki, H., Matsuishi, M., Yokoyama, A., and Tanno, T., Real-time observation of tsunami by RTK-GPS. Earth Planets Space, 52,841-845, 2000.

43. Kuo, C. Y, Shum, C. K., Braun, A., Cheng, K. and Yi, Y., Vertical Motion Determined Using Satellite Altimetry and Tide Gauges. Terrestrial Atmospheric and Oceanic Sciences, 19, pp.21-35, 2008.

44. Kuo, C. Y, Chiu, K. W., Chiang, K. W., Cheng, K., Lin, L. C., Tseng, H. Z., Chu, F. Y., Lan, W. H. and Lin, H. T., High-Frequency Sea Level Variations Observed by GPS Buoys Using Precise Point Positioning Technique. Terrestrial Atmospheric and Oceanic Sciences, 23(2), pp. 209-218, 2012.

45. Lin, L. C., Liang, M.C., and Chang, H. K., Periods of 10-30 Minutes of Sea Level Variation Observed in the Coastal Regions of Taiwan. European Geosciences Union General Assembly 2010. Geophysical Research Abstracts Vol. 12, EGU2010-3138-1, 2010.

46. Löfgren J. S., Haas, R. and Johansson, J. M., Monitoring coastal sea level using reflected GNSS signals. Adv. Space Res., 47 (2), pp. 213–220, 2011.

47. Misra P. and Enge P., Global Positioning System: Signals, Measurements and Performance. 1 ed. Ganga-Jamuna Pr, 2001.

48. Merrifield, M. A., Merrifield, S. T. and Mitchum, G. T., An Anomalous Recent Acceleration of Global Sea Level Rise. Journal of Climate, 22(21), pp.5772-5781, 2009.

49. Marine Science Australia, http://www.ausmarinescience.com/.

50. National Data Buoy Center (NDBC), How are significant wave height, dominant period, average period, and wave steepness calculated, Mississippi, USA, 2015.

51. Parkinson, B. W. and Spilker, Jr. J., Global Positioning System:Theory and Applications. American Institute of Aeronautics and Astronautics, Washington DC, 1996.

52. Riley, J. L., Murray, B. R., Hauser, O. A., Wolcott, D. B., Heitsenrether, R. M. and Gill, S. K, GPS Water Level Buoy for Hydrographic Survey Applications. Final Report: Proof-of-Concept/NWLON-Comparison Project. Silver Spring, MD, 2014.

53. Shum, C. K., and Parke, M. E., Current GPS-Buoy Sea Level Research. Draft, The Ohio State University, Columbus, Ohio, USA, 1999.

54. Sukkarieh, S., Low Cost, High Integrity, Aided Inertial Navigation Systems for Autonomous Land Vehicles. Phd Thesis. Department of Mechanical and Mechatronic Engineering, University of Sydney, Sydney, Australia, 2000.

55. Song, T.Y., Chen, J., Fu, L. L., Zlotnicki, V., Shum, C. K., Yi, Y. and Hjorleifsdottir, V., The 26 December 2004 Tsunami Source Estimated from Satellite Radar Altimetry and Seismic Waves. Geophysical Research Letters, Vol.32, L20601, 2005.

56. Tucker, M. J., A shipborne wave recorder. Trans. Roy. Inst. Nav. Archit., 98, 236-246, 1959.

57. Titterton, D. and Weston, J., Strapdown inertial navigation technology-2nd edition [book review]. IEEE Aerospace and Electronic Systems Magazine, 20, pp.33-34, 2005.

58. Thomson, J., Observations of wave breaking dissipation from a SWIFT drifter, Journal of Atmospheric and Oceanic Technology, 29, 2012.

59. Trimble. http://www.trimble.com/.

60. Way Point Product Group, GrafNav/GrafNet User Guide. Canada, 2015.

61. Young, L. E., Wu, S. C. and Dixon, T. H., Decimeter GPS Positioning for Surface Element of Sea Floor Geodesy System. Proceedings of International Symposium on Marine Positioning, October 14-17, Reston, Virginia, USA, 1986.

62. Youtube. https://www.youtube.com/.

63. Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M. and Webb, F. H., Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research, 102, pp. 5005-5017, 1997.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw