進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-3008201415043800
論文名稱(中文) 多層材料圓錐柱奈米天線陣列之表面電漿特性分析
論文名稱(英文) The plasmonic properties of dome-shape nano-rod antenna arrays with Au/Ag/Au multilayers
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 102
學期 2
出版年 103
研究生(中文) 葉德立
研究生(英文) Der-Li Yeh
學號 l76014247
學位類別 碩士
語文別 中文
論文頁數 55頁
口試委員 指導教授-張世慧
口試委員-陳宣燁
口試委員-林俊宏
中文關鍵字 表面電漿子  FDTD  多層膜結構  奈米金屬棒  週期性結構 
英文關鍵字 Periodic  FDTD  Nano-antenna  Surface plasmons  Nano-rod array  Fabry-Perot model 
學科別分類
中文摘要   表面電漿子共振能在次波長尺度結構下產生很強且侷域性光學場,而近年來的電漿奈米技術發展將天線共振的波段推展至可見光的頻段,並且這項新研究課題得到學界很大的重視。本論文,利用有限差分時域法(FDTD)數值模擬的方式對奈米金屬棒結構進行模擬,其金屬棒分為純金與金銀金多層膜來區分討論。第一部分,以單一結構之模擬空間架構,把純金屬棒之幾何結構對頻譜的變化進行討論。第二部分,以單一結構之模擬空間架構,把多層膜金銀金金屬棒之幾何結構對頻譜的變化進行討論。第三部分,以週期性結構之模擬空間架構,由第一、二部分所討論的奈米天線結構,在三角晶格陣列之下,所產生的模態電場強度進行分析比較; 並加入基板效應、銀膜效應、尖銳效應等,進一步分析這些變因對電場強度所造成具體的影響。第四部分,討論金基板對單一奈米金屬棒之光學影響。以上研究的分析在未來設計奈米天線的光學感測元件上提供重要的資訊。
英文摘要 A theoretical study of the optical properties of metallic dome-shape nano-rod antenna is presented. Such nano-rod antenna exhibits localized surface plasmon resonances under normal incidence. A longitudinal Fabry-Perot like resonant mode can be excited in the array structure. The shape sharpness results in mixing effect but overall contributes to the field enhancement. Additional metal film substrate can serve as an imaging plane to tune the resonant wavelength and enhance the field confinement. Our finding will serve as a guideline for future sensing applications using such nano-rod arrays.
論文目次 口試委員審定書 I
中文摘要 II
Abstract III
致謝 VIII
中文目錄 IX
圖目錄 XI
第一章 緒論 1
1-1. 前言與研究動機 1
第二章 研究背景 2
2-1. 發展 2
2-2. 應用 3
2-3. 製程方法 4
2-3.1. 電子束光蝕刻技術 5
2-3.2. 聚焦離子束研磨技術 6
第三章 模擬方法與原理 8
3-1. FDTD演算法 8
3-2. 三維空間的馬克士威方程式 10
3-3. 表面電漿子 15
3-4. Drude-Lorentz Model 理論 16
3-5. 表面電漿天線理論 19
3-5.1. Mass-and-Spring Model 理論 20
3-5.2. Fabry-Perot Model 理論 22
3-6. 模擬實驗架構 23
第四章 數據與分析 25
4-1. 金奈米金屬棒光學性質分析 25
4-1.1. 討論金棒長度對光學性質的影響 28
4-1.2. 討論金棒寬度對光學性質的影響 31
4-2. 金銀金多層膜奈米金屬棒光學性質分析 34
4-2.1. 討論多層膜金屬棒之銀層厚度之光學性質 35
4-2.2. 討論多層膜金屬棒之銀層位置之光學性質 36
4-3. 週期性陣列光學性質分析 37
4-3.1. 多層膜奈米金屬棒之週期性光學分析 39
4-3.2. 週期性對奈米金屬棒頻譜之影響 41
4-3.3. 炮彈狀奈米金屬棒之光學分析 43
4-3.4. 不同週期性晶格結構之光學分析 48
4-4. 金基板對單一奈米金屬棒之光學影響 49
第五章 結論與未來展望 51
5-1. 結論 51
5-2. 未來展望 52
參考文獻 53
參考文獻 1. E. Fermi, "Quantum Theory of Radiation," Reviews of Modern Physics 4, 87-132 (1932).
2. "Proceedings of the American Physical Society," Physical Review 69, 674-674 (1946).
3. J. J. Greffet, "Applied physics. Nanoantennas for light emission," Science 308, 1561-1563 (2005).
4. L. Novotny, and N. van Hulst, "Antennas for light," Nature Photonics 5, 83-90 (2011).
5. M. R. Taminiau TH, Segerink FB, Kuipers L, van Hulst NF, "Lambda/4 resonance of an optical monopole antenna probed by single molecule fluorescence," Nano Lett. 7, 28-33 (2007).
6. D. K. Gramotnev, and S. I. Bozhevolnyi, "Plasmonics beyond the diffraction limit," Nature Photonics 4, 83-91 (2010).
7. E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
8. G. G. Borg, J. H. Harris, D. G. Miljak, and N. M. Martin, "Application of plasma columns to radiofrequency antennas," Applied Physics Letters 74, 3272 (1999).
9. P. Bharadwaj, B. Deutsch, and L. Novotny, "Optical Antennas," Advances in Optics and Photonics 1, 438 (2009).
10. P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Physical Review Letters 96 (2006).
11. T. Kosako, Y. Kadoya, and H. F. Hofmann, "Directional control of light by a nano-optical Yagi–Uda antenna," Nature Photonics 4, 312-315 (2010).
12. P. Yang, R. Yan, and M. Fardy, "Semiconductor nanowire: what's next?," Nano Lett. 10, 1529-1536 (2010).
13. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, "Fano resonances in individual coherent plasmonic nanocavities," Nano Lett. 9, 1663-1667 (2009).
14. S. J. M. Lina Huang, and Olivier J. F. Martin, "Integration of plasmonic trapping in a microfluidic environment," Optics express 17, 6018-6024 (2009).
15. F. D. S. Tim H. Taminiau, and Niek F. van Hulst "Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna," Optics express 16, 10858-10866 (2008).
16. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas," Physical Review Letters 94 (2005).
17. P. Muhlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
18. H. J. L. T. W. Ebbesen, H. F. Ghaemi, T. Thio & P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1997).
19. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
20. C. S. Volpe G, Juanola Parramon R, Molina-Terriza G, Quidant R, "Controlling the optical near field of nanoantennas with spatial phase-shaped beams," Nano Lett. 9, 3608-3611 (2009).
21. A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, and S. Cabrini, "Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography," Nanotechnology 21, 065306 (2010).
22. J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, "Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter," Physical Review Letters 95 (2005).
23. P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, "Near-field polarization shaping by a near-resonant plasmonic cross antenna," Physical Review B 80 (2009).
24. P. Biagioni, J. Huang, L. Duò, M. Finazzi, and B. Hecht, "Cross Resonant Optical Antenna," Physical Review Letters 102 (2009).
25. F. T. Huang JS, Biagioni P, Hecht B, "Impedance matching and emission properties of nanoantennas in an optical nanocircuit," Nano Lett. 9, 1897-1902 (2009).
26. Y. W. Katrin Kneipp, Harald Kneipp, Lev T. Perelman, Irving Itzkan, Ramachandra R. Dasari, and Michael S. Feld, "Single molecule detection using surface-enhanced raman scattering," Phys. Rev. Lett. 78 (1997).
27. S. L. W. Richard D. Averitt, and Naomi J. Halas, "Linear optical properties of gold nanoshells," JOSA B 16, 1824-1832 (1999).
28. J. Aizpurua, P. Hanarp, D. Sutherland, M. Käll, G. Bryant, and F. García de Abajo, "Optical Properties of Gold Nanorings," Physical Review Letters 90 (2003).
29. J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. García de Abajo, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Physical Review B 71 (2005).
30. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, "Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles," Applied Physics Letters 89, 093103 (2006).
31. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nature materials 3, 601-605 (2004).
32. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Applied Physics Letters 89, 093120 (2006).
33. J. S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, "Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry," Nature communications 1, 150 (2010).
34. P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, "Spectroscopic Mode Mapping of Resonant Plasmon Nanoantennas," Physical Review Letters 101 (2008).
35. P. C. W. Wei Ting Chen, Chen Jung Chen, Hung-Yi Chung, et al., "Electromagnetic energy vortex associated with sub-wavelength plasmonic Taiji marks," Optics express 18, 19665-19671 (2010).
36. S. A. Maier, "Effective Mode Volume of Nanoscale Plasmon Cavities," Optical and Quantum Electronics 38, 257-267 (2006).
37. P. Pramod, and K. G. Thomas, "Plasmon Coupling in Dimers of Au Nanorods," Advanced Materials 20, 4300-4305 (2008).
38. W. F. van Dorp, and C. W. Hagen, "A critical literature review of focused electron beam induced deposition," Journal of Applied Physics 104, 081301 (2008).
39. S. Frabboni, G. C. Gazzadi, L. Felisari, and A. Spessot, "Fabrication by electron beam induced deposition and transmission electron microscopic characterization of sub-10-nm freestanding Pt nanowires," Applied Physics Letters 88, 213116 (2006).
40. C. O. P. Nordlander, E. Prodan, and M. I. S. K. Li, "Plasmon hybridization in nanoparticle
dimers," Nano Lett. 4, 899–903 (2004).
41. J. Melngailis, "Focused ion beam technology and applications," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 5, 469 (1987).
42. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, "High-harmonic generation by resonant plasmon field enhancement," Nature 453, 757-760 (2008).
43. J. S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, "Mode imaging and selection in strongly coupled nanoantennas," Nano lett. 10, 2105-2110 (2010).
44. G. Han, D. Weber, F. Neubrech, I. Yamada, M. Mitome, Y. Bando, A. Pucci, and T. Nagao, "Infrared spectroscopic and electron microscopic characterization of gold nanogap structure fabricated by focused ion beam," Nanotechnology 22, 275202 (2011).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-12-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw