進階搜尋


下載電子全文  
系統識別號 U0026-3008201011335600
論文名稱(中文) 部分貼附式壓電材料的複合曲樑之結構分析
論文名稱(英文) Structural Responses of Surface-Mounted Piezoeletric Curved Composite Beams
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 98
學期 2
出版年 99
研究生(中文) 蔡仲儒
研究生(英文) Chung-Ju TSAI
學號 N9697123
學位類別 碩士
語文別 中文
論文頁數 92頁
口試委員 指導教授-王榮泰
口試委員-潘文峰
口試委員-洪振益
中文關鍵字 壓電材料  曲樑 
英文關鍵字 piezoelectric  curved beam 
學科別分類
中文摘要 本文目的為探討具有部分貼附式壓電材料之複合材料曲樑的結構特性;複合材料樑與上下層貼上壓電材料薄片,構成部份貼附式壓電材料複合曲樑。
為了瞭解曲樑之力學行為,利用應力場、應變場、連續位移條件的關係推導出應變能公式,再以Hamilton's Principle求得運動方程式和邊界條件。
利用靜態結構方程式推導出位移場通解,並代入不同的邊界條件可獲得其位移場特解。
再施予不同附載之集中外力、電位差探討不同壓電片位置、壓電片長度與壓電片厚度對位移、應變及應力的影響。
英文摘要 A curved composited beam partially surface-mounted with piezoelectric material is considered in this paper. The curved beam element is based on Timoshenko beam theory. Then the strain energy and kinetic energy derived by the stress、strains and continuous displacement. Governing equations and boundary conditions are derived by Hamilton’s Principle.
General solutions of displacement field equations derived from the static structure. The constant of integration can be obtained by different boundary conditions .
The effects of location、length and thickness of the piezoelectric pair on deflection、strain-stress of the entire curved beam are investigated .
論文目次 目錄
摘要......................................................I
Abstract.................................................II
誌謝.....................................................III
圖目錄....................................................X
符號說明..................................................XV
第一章 緒論.................................................1
§1-1 前言..................................................1
§1-2 研究目的..............................................2
§1-3 文獻回顧..............................................3
§1-4 架構流程..............................................5
§1-5 基本假設..............................................6
第二章 運動方程式...........................................7
§2-1 初始設定..............................................7
2-1-1 曲梁模型基本架構......................................7
2-1-2 位移場基本架構........................................8
§2-2應力場基本架構..........................................9
2-2-1 曲樑中心層應力場......................................9
2-2-2 壓電材料層應力場.....................................12
§2-3應變場和應變能.........................................13
2-3-1 基本設定............................................13
2-3-2 中心層應變架構.......................................14
2-3-3 中心層合應力與合應力偶矩..............................14
2-3-4 中心層應變能架構.....................................15
2-3-5 壓電材料層應變架構....................................16
2-3-6 壓電材料層合應力與合應力偶矩...........................17
2-3-7 壓電材料層應變能架構..................................17
2-3-8 整體應變能總合.......................................19
§2-4結構運動方程式及邊界條件................................20
§2-5接面應力..............................................24
第三章 靜態分析............................................24
§3-1靜態平衡..............................................24
3-1-1一三跨距靜態平衡方程式.................................24
3-1-2第二跨距靜態平衡方程式.................................30
§3-2整體結構響應...........................................41
第四章 模擬數據分析.........................................48
§4-1案例探討..............................................49
4-1-1 各參數值............................................49
4-1-2壓電材料PZT-5H.......................................49
4-1-3 T300/Al鋁基複合材料.................................49
§4-2外力作用下之探討.......................................50
4-2-1改變壓電片位置........................................51
4-2-1-1 w位移的變化......................................51
4-2-1-2應變分佈.........................................52
4-2-1-3應力分佈.........................................53
4-2-2改變壓電片長度........................................54
4-2-2-1 w位移的變化.....................................54
4-2-2-2應變分佈.........................................55
4-2-2-3應力分佈.........................................56
4-2-3改變壓電片厚度........................................57
4-2-3-1 w位移的變化.....................................57
4-2-3-2應變分佈.........................................58
4-2-3-3應力分佈.........................................59
§4-3電壓作用下之探討.......................................60
4-3-1改變壓電片位置........................................61
4-3-1-1 w位移的變化.....................................61
4-3-1-2應變分佈.........................................62
4-3-1-3應力分佈.........................................63
4-3-2改變壓電片長度........................................64
4-3-2-1 w位移的變化......................................64
4-3-2-2應變分佈.........................................65
4-3-2-3應力分佈.........................................66
4-3-3改變壓電片厚度........................................67
4-3-3-1 w位移的變化......................................67
4-3-3-2應變分佈.........................................68
4-3-3-3應力分佈.........................................69
§4-4接面應力..............................................70
4-4-1複合曲樑受1N外力,改變壓電片厚度之接面應力................70
4-4-2複合曲樑受1Volt電壓,改變壓電片厚度之接面應力.............71
§4-5改變複合材料纖維走向....................................72
4-5-1改變複合材料纖維走向受1N外力影響之位移...................72
4-5-2改變複合材料纖維走向受1Volt電壓影響之位移................73
4-5-3改變複合材料纖維走向受1N外力影響........................74
4-5-4改變複合材料纖維走向受1Volt電壓影響.....................75
第五章 結論與建議..........................................76
5-1結論...................................................76
5-2建議...................................................76
參考文獻..................................................77
附錄A.....................................................79
附錄B.....................................................82
附錄C.....................................................90
自述......................................................92
參考文獻 1.A.E.H.Love,”A Treatist on the Mathematical Theory of Elasticity” Edn.
Dove,New York,1994.
2.J.P.Den Hartog,”Mechanical Vibraions,” Edn.MaGraw-Hill,New York
,1956.
3.S.S.Rao,”Effects of transverse and rotary inertia on the coupled twist-bending vibrations of circular ring,”Journal of Sound and Vibration,
Vol.16,pp.551-556,1971.
4.Jan G.Smits and Wai-shing Cho,”The Constituent Equations of Piezoelectric Heterogenous Bimorphs,”IEEE of Ferroeletrics and Frequency Control,Vol.38,No.3,1991.
5.Qingyuan Meng,Mehran Mehregany and Keren Deng,”Modeling of the electromechanical performance of piezoelectric laminated microacutuators,”Journal of Micromech. Microeng,Vol.3,18-23,1993.
6.Stephen Brooks and Paul Heyliger,”Static Behavior of Piezoelectric Laminates with Distributed and Patched Actuators”,Journal of Intelligent Material Systems and Structures,Vol.5,635-646,1994.
7.Sang-Kwan Lee,Joon-Hyung Byun and Soon Hyung Hong,”Effect of fiber geometry on the elastic constants of the plain woven fabric reinforced aluminum matrix composites,”Materials Science and Engineering, A347,346-358,2003.
8.Li Jun and Hua Hongxing,”Dynamic stiffness analysis of laminated composite beams using trigonometric shear deformation theory,”Composite Structures 89,433-442,2009.
9.Nilanjan Mallik and M.C.Ray,”Effective Coefficients of Piezoelectric Fiber-Reinforced Composites,”AIAA Journal,Vol.41,No.4,704-709,2003.
10.Manas Chandra Ray,”Micromechanics of piezoelectric composites with improved effective piezoelectric constant,” Int J Mech Mater ,3,361-371
,2006.
11. Harald Berger , Sreedhar Kari, Ulrich Gabbert,
Reinaldo Rodriguez-Ramos , Raul Guinovart , Jose A. Otero,
Julian Bravo-Castillero,” An analytical and numerical approach for calculating effective material coefficients of piezoelectric fiber composites”, International Journal of Solids and Structures ,42,5692–5714,2005.
12. H.Y. Zhang, Y.P. Shen, “Three-dimensional analysis for rectangular 1–3 piezoelectric fiber-reinforced composite laminates with the interdigitated
electrodes under electromechanical loadings,” Composites:Part B,37, 603–611,2006.
13.S.RAJA,R.SREEDEEP and G.PRTHAP,”Bending Behavior of Hybrid-actuated Piezoelectric Sandwich Beams,”Journal of Intelligent Material Systems and Structures,Vol.15,611-619,2004.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2010-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2010-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw