進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-3007202018314700
論文名稱(中文) 快速微流體紙基晶片應用於血清中磷之檢測
論文名稱(英文) Rapid Microfluidic Paper-Based Chip for Phosphorus Detection in Serum
校院名稱 成功大學
系所名稱(中) 工程科學系
系所名稱(英) Department of Engineering Science
學年度 108
學期 2
出版年 109
研究生(中文) 劉昱賢
研究生(英文) Yu-Hsien Liu
學號 N96071368
學位類別 碩士
語文別 中文
論文頁數 72頁
口試委員 指導教授-傅龍明
口試委員-楊瑞珍
口試委員-曾進忠
口試委員-林哲信
口試委員-饒達仁
中文關鍵字   微流體紙基晶片  慢性腎臟病 
英文關鍵字 Phosphorus  Microfluidic paper-based chip  Chronic kidney disease 
學科別分類
中文摘要 隨著人口老化,慢性病日益盛行,台灣罹患慢性腎臟病(Chronic Kidney Disease, CKD)的人數也越來越多。CKD患者因腎臟受損而無法維持體內的磷平衡,最終可能導致高磷血症。目前沒有類似血糖機的快篩系統來幫助CKD患者進行自我檢測,因此本研究發展一套快篩檢測系統,來幫助病患快速檢測血液中的磷濃度。本研究結合實驗室晶片(Lab-on-a-chip, LOC)與即時檢測(Point-of-Care-Testing, POCT)的概念,開發出一種紙基晶片應用於血清中磷之檢測。在所提出的方法中,將樣品滴入紙基晶片的反應區,等待反應後,利用紙基晶片檢測系統讀取RGB值,並換算其磷濃度。實驗結果顯示在磷濃度1~9 mg/ dL的區間中,其對應的R+G+B值線性度R2可以近似為0.99。為了驗證本實驗所設計之紙基晶片對於真實樣品的適用性,使用100例患有慢性腎臟病者的血清樣品進行測試,與醫院檢測數值相比較,結果顯示有95例樣品回收率介於100±15%,驗證了此紙基晶片的可行性。總體而言,該紙基晶片為血清磷濃度檢測提供一種快速、低成本且可靠的方法。
英文摘要 Chronic diseases become more prevalent because of population ageing. In Taiwan, more and more people suffer the chronic kidney disease (CKD). CKD patients cannot maintain phosphorus balance due to kidney damage, which may cause hyperphosphatemia. Currently, there are no commercial products such as glucose meters can help CKD patients perform self-tests. This study develops a fast detection system to help them detect phosphorus concentration in their blood immediately. The concept of Lab-on-a-chip (LOC) and Point-of-care-testing (POCT) are combined to develop a paper-based chip for phosphorus detection in serum. In the proposed method, samples are dropped into the reaction area of the paper-based chip. After the colorimetric reaction, the Red Green Blue (RGB) value is read by the paper-based chip detection system, and phosphorus concentration is deduced from the RGB value. The experimental results indicate that the R+G+B value linearity can approximate 0.99 in the range of phosphorus concentration 1~9 mg/ dL. In order to verify the application of the paper-based chip with real samples, 100 serum samples from CKD patients are tested. The result shows that the recovery rate of 95 samples was between 100 ± 15%, verify the feasibility of the paper-based chip. Overall, the results show that the proposed paper-based chip provides a rapid, low-cost, and reliable approach for phosphorus detection in serum.
論文目次 摘要 I
誌謝 VII
目錄 VIII
表目錄 XI
圖目錄 XII
第1章 緒論 1
1.1 研究動機 1
1.2 慢性腎臟病 1
1.3 微機電系統 3
1.4 微流體技術 4
1.5 研究架構 5
第2章 文獻回顧 6
2.1 微流體紙基晶片 6
2.1.1 歷史 6
2.1.2 檢測原理 8
2.1.3 製作方法 11
2.2 磷 16
2.2.1 生化功能 16
2.2.2 檢測方法 16
2.3 微量全血分離 18
2.3.1 微流體晶片形式 18
2.3.2 紙基形式 22
2.3.3 CD形式 24
2.3.4 其他 25
2.4 比色讀取系統 27
第3章 材料與方法 29
3.1 材料與設備 29
3.1.1 儀器設備 29
3.1.2 化學藥品 32
3.2 紙基晶片設計與製作 33
3.3 從微量全血中分離出血漿 34
3.4 紙基晶片檢測法 35
3.4.1 紙張選擇測試 35
3.4.2 液體蒸發對檢測影響測試 36
3.4.3 時間測試 36
3.4.4 標準曲線建立 37
3.4.5 實際樣品檢測 38
3.5 傳統分光檢測法 39
3.5.1 全光譜掃描測定 39
3.5.2 標準曲線建立 40
3.5.3 實際樣品檢測 41
第4章 結果與討論 42
4.1 從微量全血中分離出血漿 42
4.2 紙基晶片檢測法 45
4.2.1 濾紙選用 45
4.2.2 液體蒸發對檢測結果之影響 48
4.2.3 最佳量測時間 51
4.2.4 標準曲線 53
4.3 傳統分光檢測法 55
4.3.1 全光譜掃描 55
4.3.2 標準曲線 56
4.4 真實樣品量測 57
4.4.1 傳統分光檢測法 57
4.4.2 紙基晶片檢測法 59
第5章 結論與未來展望 64
5.1 結論 64
5.2 未來展望 65
參考文獻 66
附錄 71
參考文獻 [1]衛生福利部統計處,108年度死因統計,2018。
[2] M. Van Der Velde, K. Matsushita, J. Coresh, B.C. Astor, M. Woodward, A.S. Levey, P.E. De Jong, R.T. Gansevoort, Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts, Kidney International, 79 (2011) 1341-1352.
[3] R.P. Feynman, There's plenty of room at the bottom [data storage], Journal of Microelectromechanical Systems, 1 (1992) 60-66.
[4] D.J. Nagel, M.E. Zaghloul, MEMS: micro technology, mega impact, IEEE Circuits and Devices Magazine, 17 (2001) 14-25.
[5] A. Nisar, N. Afzulpurkar, B. Mahaisavariya, A. Tuantranont, MEMS-based micropumps in drug delivery and biomedical applications, Sensors and Actuators B: Chemical, 130 (2008) 917-942.
[6] C.H. Ahn, J.-W. Choi, G. Beaucage, J.H. Nevin, J.-B. Lee, A. Puntambekar, J.Y. Lee, Disposable smart lab on a chip for point-of-care clinical diagnostics, Proceedings of the IEEE, 92 (2004) 154-173.
[7] W. Jung, J. Han, J.-W. Choi, C.H. Ahn, Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies, Microelectronic Engineering, 132 (2015) 46-57.
[8] A.K. Yetisen, M.S. Akram, C.R. Lowe, based microfluidic point-of-care diagnostic devices, Lab on a Chip, 13 (2013) 2210-2251.
[9] R. Müller, D. Clegg, Automatic paper chromatography, Analytical Chemistry, 21 (1949) 1123-1125.
[10] J. Comer, Semiquantitative specific test paper for glucose in urine, Analytical Chemistry, 28 (1956) 1748-1750.
[11] C. Parolo, A. Merkoçi, based nanobiosensors for diagnostics, Chemical Society Reviews, 42 (2013) 450-457.
[12] A.W. Martinez, S.T. Phillips, M.J. Butte, G.M. Whitesides, Patterned paper as a platform for inexpensive, low‐volume, portable bioassays, Angewandte Chemie International Edition, 46 (2007) 1318-1320.
[13] B.M. Jayawardane, I.D. McKelvie, S.D. Kolev, Development of a gas-diffusion microfluidic paper-based analytical device (μPAD) for the determination of ammonia in wastewater samples, Analytical Chemistry, 87 (2015) 4621-4626.
[14] M. Li, R. Cao, A. Nilghaz, L. Guan, X. Zhang, W. Shen, “Periodic-table-style” paper device for monitoring heavy metals in water, Analytical Chemistry, 87 (2015) 2555-2559.
[15] W. Liu, Y. Guo, M. Zhao, H. Li, Z. Zhang, Ring-oven washing technique integrated paper-based immunodevice for sensitive detection of cancer biomarker, Analytical Chemistry, 87 (2015) 7951-7957.
[16] S. Chaiyo, K. Kalcher, A. Apilux, O. Chailapakul, W. Siangproh, A novel paper-based colorimetry device for the determination of the albumin to creatinine ratio, Analyst, 143 (2018) 5453-5460.
[17] N. Lopez-Ruiz, V.F. Curto, M.M. Erenas, F. Benito-Lopez, D. Diamond, A.J. Palma, L.F. Capitan-Vallvey, Smartphone-based simultaneous pH and nitrite colorimetric determination for paper microfluidic devices, Analytical Chemistry, 86 (2014) 9554-9562.
[18] Z. Nie, F. Deiss, X. Liu, O. Akbulut, G.M. Whitesides, Integration of paper-based microfluidic devices with commercial electrochemical readers, Lab on a Chip, 10 (2010) 3163-3169.
[19] T. Nurak, N. Praphairaksit, O. Chailapakul, Fabrication of paper-based devices by lacquer spraying method for the determination of nickel (II) ion in waste water, Talanta, 114 (2013) 291-296.
[20] C.S.K. Lawrence, S.N. Tan, C.Z. Floresca, A “green” cellulose paper based glucose amperometric biosensor, Sensors and Actuators B: Chemical, 193 (2014) 536-541.
[21] W. Li, L. Li, S. Ge, X. Song, L. Ge, M. Yan, J. Yu, Multiplex electrochemical origami immunodevice based on cuboid silver-paper electrode and metal ions tagged nanoporous silver–chitosan, Biosensors and Bioelectronics, 56 (2014) 167-173.
[22] L. Li, Y. Zhang, L. Zhang, S. Ge, M. Yan, J. Yu, Steric paper based ratio-type electrochemical biosensor with hollow-channel for sensitive detection of Zn2+, Science Bulletin, 62 (2017) 1114-1121.
[23] J. Yu, L. Ge, J. Huang, S. Wang, S. Ge, Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid, Lab on a Chip, 11 (2011) 1286-1291.
[24] W. Liu, Y. Guo, H. Li, M. Zhao, Z. Lai, B. Li, A paper-based chemiluminescence device for the determination of ofloxacin, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137 (2015) 1298-1303.
[25] J.L. Delaney, C.F. Hogan, J. Tian, W. Shen, Electrogenerated chemiluminescence detection in paper-based microfluidic sensors, Analytical Chemistry, 83 (2011) 1300-1306.
[26] J. Nie, Y. Liang, Y. Zhang, S. Le, D. Li, S. Zhang, One-step patterning of hollow microstructures in paper by laser cutting to create microfluidic analytical devices, Analyst, 138 (2013) 671-676.
[27] E. Carrilho, A.W. Martinez, G.M. Whitesides, Understanding wax printing: a simple micropatterning process for paper-based microfluidics, Analytical Chemistry, 81 (2009) 7091-7095.
[28] K. Abe, K. Suzuki, D. Citterio, Inkjet-printed microfluidic multianalyte chemical sensing paper, Analytical Chemistry, 80 (2008) 6928-6934.
[29] T. Songjaroen, W. Dungchai, O. Chailapakul, W. Laiwattanapaisal, Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping, Talanta, 85 (2011) 2587-2593.
[30] E.M. Fenton, M.R. Mascarenas, G.P. López, S.S. Sibbett, Multiplex lateral-flow test strips fabricated by two-dimensional shaping, ACS applied materials & interfaces, 1 (2009) 124-129.
[31] H. Liu, R.M. Crooks, Three-dimensional paper microfluidic devices assembled using the principles of origami, Journal of the American Chemical Society, 133 (2011) 17564-17566.
[32]成大醫院病理部磷檢驗查詢網頁。檢自http://www.nckuhpath.com/inspection_content.php?id=78
[33] J.P. Knochel, The pathophysiology and clinical characteristics of severe hypophosphatemia, Archives of Internal Medicine, 137 (1977) 203-220.
[34] K.A. Hruska, S. Mathew, R. Lund, P. Qiu, R. Pratt, Hyperphosphatemia of chronic kidney disease, Kidney International, 74 (2008) 148-157.
[35] S.C. Palmer, A. Hayen, P. Macaskill, F. Pellegrini, J.C. Craig, G.J. Elder, G.F.M. Strippoli, Serum levels of phosphorus, parathyroid hormone, and calcium and risks of death and cardiovascular disease in individuals with chronic kidney disease: a systematic review and meta-analysis, Jama, 305 (2011) 1119-1127.
[36] E.S. Baginski, E. Epstein, B. Zak, Review of phosphate methodologies, Annals of Clinical & Laboratory Science, 5 (1975) 399-416.
[37] S. Berchmans, T.B. Issa, P. Singh, Determination of inorganic phosphate by electroanalytical methods: A review, Analytica Chimica Acta, 729 (2012) 7-20.
[38] A.K. Dwivedi, G. Saikia, P.K. Iyer, Aqueous polyfluorene probe for the detection and estimation of Fe 3+ and inorganic phosphate in blood serum, Journal of Materials Chemistry, 21 (2011) 2502-2507.
[39] N. Gao, J. Huang, L. Wang, J. Feng, P. Huang, F. Wu, Ratiometric fluorescence detection of phosphate in human serum with a metal-organic frameworks-based nanocomposite and its immobilized agarose hydrogels, Applied Surface Science, 459 (2018) 686-692.
[40] C.H. Fiske, Y. Subbarow, The colorimetric determination of phosphorus, Journal of Biological Chemistry, 66(1925) 375-400.
[41] L. Drummond, W. Maher, Determination of phosphorus in aqueous solution via formation of the phosphoantimonylmolybdenum blue complex. Re-examination of optimum conditions for the analysis of phosphate, Analytica Chimica Acta, 302 (1995) 69-74.
[42] J. Murphy, J.P. Riley, A modified single solution method for the determination of phosphate in natural waters, Analytica Chimica Acta, 27 (1962) 31-36.
[43] M. Kersaudy-Kerhoas, E. Sollier, Micro-scale blood plasma separation: from acoustophoresis to egg-beaters, Lab on a Chip, 13 (2013) 3323-3346.
[44] I.K. Dimov, L. Basabe-Desmonts, J.L. Garcia-Cordero, B.M. Ross, A.J. Ricco, L.P. Lee, Stand-alone self-powered integrated microfluidic blood analysis system (SIMBAS), Lab on a Chip, 11 (2011) 845-850.
[45] C. Li, C. Liu, Z. Xu, J. Li, Extraction of plasma from whole blood using a deposited microbead plug (DMBP) in a capillary-driven microfluidic device, Biomedical Microdevices, 14 (2012) 565-572.
[46] A.J. Mach, D. Di Carlo, Continuous scalable blood filtration device using inertial microfluidics, Biotechnology and Bioengineering, 107 (2010) 302-311.
[47] A. Lenshof, A. Ahmad-Tajudin, K. Jarås, A.-M. Sward-Nilsson, L. Åberg, G. Marko-Varga, J. Malm, H. Lilja, T. Laurell, Acoustic whole blood plasmapheresis chip for prostate specific antigen microarray diagnostics, Analytical Chemistry, 81 (2009) 6030-6037.
[48] X. Yang, O. Forouzan, T.P. Brown, S.S. Shevkoplyas, Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices, Lab on a Chip, 12 (2012) 274-280.
[49] T. Songjaroen, W. Dungchai, O. Chailapakul, C.S. Henry, W. Laiwattanapaisal, Blood separation on microfluidic paper-based analytical devices, Lab on a Chip, 12 (2012) 3392-3398.
[50] A. Nilghaz, W. Shen, Low-cost blood plasma separation method using salt functionalized paper, RSC Advances, 5 (2015) 53172-53179.
[51] S. Haeberle, T. Brenner, R. Zengerle, J. Ducrée, Centrifugal extraction of plasma from whole blood on a rotating disk, Lab on a Chip, 6 (2006) 776-781.
[52] A.P. Wong, M. Gupta, S.S. Shevkoplyas, G.M. Whitesides, Egg beater as centrifuge: isolating human blood plasma from whole blood in resource-poor settings, Lab on a Chip, 8 (2008) 2032-2037.
[53] M.S. Bhamla, B. Benson, C. Chai, G. Katsikis, A. Johri, M. Prakash, Hand-powered ultralow-cost paper centrifuge, Nature Biomedical Engineering, 1 (2017) 1-7.
[54] C.H. Liu, C.A. Chen, S.J. Chen, T.T. Tsai, C.C. Chu, C.C. Chang, C.F. Chen, Blood Plasma Separation Using a Fidget-Spinner, Analytical Chemistry, 91 (2018) 1247-1253.
[55] D. Quesada-González, A. Merkoçi, Mobile phone-based biosensing: An emerging “diagnostic and communication” technology, Biosensors and Bioelectronics, 92 (2017) 549-562.
[56] S.H. Im, K.R. Kim, Y.M. Park, J.H. Yoon, J.W. Hong, H.C. Yoon, An animal cell culture monitoring system using a smartphone-mountable paper-based analytical device, Sensors and Actuators B: Chemical, 229 (2016) 166-173.
[57] 柯建亘,快速微流體紙基晶片系統應用於食品添加物中二氧化硫之檢測,碩士論文,國立屏東科技大學,材料工程研究所,屏東,2018。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-07-16起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-07-16起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw