進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-3007201920304800
論文名稱(中文) 蒲福風浪關係修正之研究
論文名稱(英文) A Study on the Modified Beaufort Wind-Wave Correlation
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 林家亘
研究生(英文) Chia-Hsuan Lin
學號 N86061141
學位類別 碩士
語文別 中文
論文頁數 76頁
口試委員 指導教授-董東璟
口試委員-陳文俊
口試委員-謝志敏
中文關鍵字 蒲福風浪關係表  漁業氣象預報  浮標 
英文關鍵字 Beaufort wind-wave correlation  Fishery meteorological data  Buoy 
學科別分類
中文摘要 海氣象預報的方式至今有很多,包含諸多常用的經驗方法,或是數值模式預報等。然而漁民、海上作業員、海上遊憩業者及漁類養殖業者,較常根據蒲福風浪關係表由風級來推算浪級,屬於一種快速的經驗法則應用方式。因此本文旨在根據現場的實測海象資料及中央氣象局漁業氣象預報資料,來探討蒲福風浪關係在台灣海域環境下的適用性。
本文分析對象包含台灣海峽內之新竹海域、北部龍洞海域以及台東外洋海域。本研究取得中央氣象局漁業氣象預報資料與新竹、龍洞及台東外洋浮標的實測資料,首先針對漁業氣象預報中的平均風級與陣風進行比對,發現漁業氣象預報在三個海域會因不同季節而有不同程度的誤差,而風級的預測偏差可能導致浪級的預測不準確。如夏季期間預測風級較易有高估現象,以陣風為例,其最大有高估達88.4%(龍洞海域);冬季期間預測風級則較容易低於實測風速量測值,以陣風為例,最大有低估達54.8%(台東外洋海域)。因此本文以新竹、龍洞及台東外洋三測站實測資料與傳統蒲福浪級比較。分析結果顯示,當風級大於(等於)3時,實測浪高均小於傳統蒲福風級所對應的浪高,且發現三個海域風浪成長規模皆不同,主要是各海域水深與地理位置的差異,影響該海域的風浪成長。本研究也就各海域分別提出修正之蒲福風浪關係,當使用經驗推算可快速得到更貼近的實際海況,因此本文認為所提出之修正蒲福風浪關係較適用於台灣鄰近海域。
英文摘要 Taiwan’s marine meteorology is rather complicated due to 1) complicated landform around Taiwan sea area, 2) typhoons in summer and autumn seasons, and 3) Kuroshio current that flows from Philippine to Japan via the east of Taiwan sea area. To study the complexity of Taiwan’s marine meteorology, this research analyzed and compared fishery forecasting data released by Central Weather Bureau (CWB), Taiwan and in-situ measurement data retrieved from data buoys at Hsinchu, Longdong, and Taitung open ocean, respectively. The comparison discovered that the forecasting data had a significant difference with the measured data. Furthermore, the analyses of this research disclosed that the measured wave-height was significantly lower than that of Beaufort wind-wave correlation, when the wind scale was higher than (or equal to) Beaufort number 3. Accordingly, in this study, a new modified Beaufort wind-wave correlation based on the regression of in-situ measurement data is proposed as a more applicable reference for ocean workers in Taiwan sea area.
論文目次 第一章 前言 1
1-1 研究背景 1
1-2 文獻回顧 3
1-3 研究目的 3
1-4 論文架構 4
第二章 風浪關係理論 5
2-1 風浪生成理論 5
2-2 文獻上重要的風浪關係 7
第三章 分析資料 9
3-1 現場觀測資料與品管 9
3-1-1 海氣象資料浮標系統 9
3-1-2 分析測站的基本資料 10
3-1-3 資料浮標的分析方式 11
3-1-4 資料品管 12
3-2 風湧浪分離 13
3-3 中央氣象局漁業氣象預報資料 14
第四章 分析結果與討論 16
4-1漁業氣象預報與實測海況比較 16
4-1-1近岸海域的比較 16
4-1-2外洋海域的比較 41
4-2 波高與風速間的關係 51
4-2-1全部資料分析 51
4-2-2 風浪高與風速間的關係 55
4-2-3 湧浪高與風速間的關係 59
4-3 颱風期間的風浪關係 61
4-4 蒲福風浪關係之修正 66
第五章 結論 71
第六章 討論及未來展望 73
參考文獻 74
參考文獻 1. http://typhoon.ws/learn/reference/beaufort_scale
2. 徐月娟、張國強、李汴軍、高家俊、莊士賢、董東璟,”實測風浪關係與蒲福風級浪級之探討,”中央氣象局天氣分析與預報研討會論文集,台北,第115-123頁(2003)。
3. 鄭名媖,從實測資料探討蒲福風級與浪級關係之研究,國立台灣海洋大學碩士論文(2013)。
4. WAMDI Group “The WAM model – a third generation ocean wave prediction model,” J. Phys. Oceanogr. 18, pp.1775-1810 (1988).
5. H. L. Tolman, User manual and system documentation of WAVE WATCH-III version 1.15, NOAA / NWS / NCEP / OMB Technical Note 151 (1997).
6. N. Booij, L. H. Holthuijsen, and R. C. Ris “The SWAN wave model for shallow water,” Proceedings of 24th International Conference on Coastal Engineering, ASCE, Orlando, Vol. 1, pp. 668-676 (1996).
7. 徐月娟、楊天瑋、及張恆文,”SWAN模式在東北部及南部海域之應用研究”,第28屆海洋工程研討會論文集,第247-252頁(2006)。
8. 陳勇隆、臧效義、許泰文、林鎮洲、及何積忠,”應用 SWAN 模式於基隆海域波浪能計算之評估,”第35屆海洋工程研討會論文集,第871-876頁(2013)。
9. H. U. Sverdrup and W. H. Munk, “Wind, Sea and Swell: Theory of relations for forecasting” U. S. Navy Hydrographic Office, H. 0. Publ. No. 601(1947).
10. R. J. Seymour, “Estimating Wave Generation in Restricted Fetches,” J. ASME WW2, pp.251-263 (1977).
11. SPM ,Shore Protection Manual, Coastal Engineering Research Centre, US Department of Army, Corps of Engineers, Waterways Experiment Station, Vicksburg, Mississippi(1984).
12. B. W. Wilson, Graphical approach to the forcasting of waves in moving fetches, Beach Erosion Board, Tech. Memo. No. 73(1955).
13. 郭金棟,海岸工程,中國土木水利工程學會(1999)
14. 湯麟武,”台灣海峽海面風與浪關係之研究,”成功大學學報第4卷,第19-58頁(1969)。
15. K. Hasselmann, D. B. Ross, P. Muller, and W. Sell, “A parametric wave prediction model,” J. Phys. Oceanogr. 6, pp. 200-228(1976).
16. B. Kinsman, Wind wave, Prentice Hall, Englewood Cliffs, N.J., USA(1965).
17. W. J.Pierson and L. Moskowit, “A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii,” J. Geophys. Res. 69, pp.5181-5190 (1964).
18. J. A. Ewing and A. K. Laing, "Directional spectra of seas near full development,” J. Phys. Oceanogr. 17, pp. 1696-1706 (1987).
19. A. Blake,” The Dependence of Wind Stress on Wave Height and Wind Speed,” J. Geophys,Res. 96,pp20531-20545 (1991)
20. G. Chen, B. Chapron, R. Ezraty, and D. Vandemark, “A global view of swell and wind sea climate in the ocean by satellite altimeter and scatterometer,” J. Atmos. Oceanic Tech. 19, pp. 1849–1859 (2002).
21. P. R. Shanas and V. S. Kumar, “Trends in surface wind speed and significant wave height as revealed by ERA-Interim wind wave hindcast in the Central Bay of Bengal,” Int. J. Climatol. 35, pp. 2654–2663 (2015).
22. https://www.cwb.gov.tw/V7/observe/marine/
23. 林演斌、陳聖學、施孟憲、黃清哲、高家俊,”適用於近岸的浮標觀測資料分析研究,”第32屆海洋工程研討會論文集,國立海洋大學,基隆,第 647~652頁(2010)。
24. 張憲國、何良勝、劉勁成、林受勳,”由聲波及壓力訊號所得水位能譜之比較,”第32屆海洋工程研討會論文集,基隆,第143-148頁(2010)。
25. Y. Goda, Random Seas and Design of Marine Structures, World Scientific, PP.443 (2000).
26. M. Hisashi, 海浪特性與推算,湯麟武 譯。
27. 李堉辰、董東璟、及陳盈智,“考慮有限吹風延時之風湧浪分離方法,”第 39屆海洋工程研討會論文集,弘光科技大學,2017年11月。
28. A. Pecher and J. P. Kofoed, Handbook of Ocean Wave Energy, Springer, New York, U.S., 2016.
29. https://rdc28.cwb.gov.tw/
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw