進階搜尋


下載電子全文  
系統識別號 U0026-3007201917593900
論文名稱(中文) 無人飛行載具搭載軟體定義無線電結合樹莓派實作空中與地面之無線通訊系統
論文名稱(英文) The Implementation of a Wireless Communication System Between Space and Ground via an Unmanned Aerial Vehicle Carrying Software Defined Radio and Raspberry Pi Devices
校院名稱 成功大學
系所名稱(中) 電信管理研究所
系所名稱(英) Institute of Telecommunications and Management
學年度 107
學期 2
出版年 108
研究生(中文) 張凱翔
研究生(英文) Kai-Xiang Chang
學號 R96061112
學位類別 碩士
語文別 中文
論文頁數 42頁
口試委員 指導教授-陳文字
口試委員-林珮珺
口試委員-林福林
中文關鍵字 軟體定義無線電  無人飛行載具 
英文關鍵字 GNU Radio  pixhawk 
學科別分類
中文摘要 網路、資訊和通訊技術的發達,無線通訊使人們生活產生更多元的樣貌,我們可以透過通訊使萬物聯網。至今,許多車廠投注大力資金與技術,將行車資料互相傳遞,稱之為車聯網。車聯網世界中,不只有車子間的互聯,另外也包括路側設備與其他設備,例如無人飛行載具,用來協助車聯網運行更加順利。
本研究利用軟體定義無線電SDR(software defined radio)技術,可取代傳統以硬體技術為基礎的通訊模組,運用SDR的優勢可以將不同的通訊協定,並利用於各節點互相通訊。本研究也利用無人飛行載具,搭載軟體定義無線電設備USRP (universal software radio peripheral)與地面車輛通訊,並以樹莓派為整合中心,擷取無人飛行載具飛行控制器pixhawk的飛行資訊,將蒐集到的資料透過4G行動網路,上傳至雲端,以利中央控制人員分析和透過GPS訊息得知此時無人飛行載具的位置,也可以利用行動網路,即時更改無人飛行載具傳送的資料,達到將重要或突發狀況資訊透過USRP傳送到場域中的每一台車。本研究以GNU Radio作為軟體開發平台,運用軟體定義無線電架構完成車聯網車對車的通訊與車對無人飛行載具的通訊,運用CSMA與FDD通訊協定讓資訊順利的收發,實現未來可以以較低的成本且方便修改的性質,達到車子對其他車輛或是無人飛行載具之間的通訊。
英文摘要 With the development of Internet, information and communication technologies, wireless communication has made people's lives more diverse. Hence, many car manufacturers have invested heavily in funds and technology to develop a platform in which vehicles can transfer driving information to each other. This platform can be called the Internet of Vehicles (IoV). There are many interconnections among cars, roadside units, as well as other devices in the IoV. One of the possible devices to help the vehicle network operate more smoothly is unmanned aerial vehicle. This research uses software defined radio (SDR) technology to replace traditional hardware-based communication modules. The major advantage of SDR is its high flexibility, i.e. some important communication parameters can be easily changed by software. The study uses an unmanned aerial vehicle carrying a Raspberry Pi, which equipped with an USRP (universal software radio peripheral) to communicate with ground vehicles. The Raspberry Pi acts as the core device to capture the flight information of the unmanned flight vehicle. This flight information in general come out from flight controller called Pixhawk. The collected information will be uploaded to the cloud through the 4G mobile network. This feature can allow authorized users to access the location of the unmanned vehicle via the cloud in the Internet. Similarly, some urgent information can be broadcast to the vehicles in the ground from a monitoring center via the cloud platform. The urgent information is radiated to vehicles by the USRP in the UAV. In this research, GNU Radio is used as a software development platform. The software-defined radio architecture is used to design the communication system between the vehicle-to-vehicle and the vehicle-to-UAV. Finally, this research implements a prototype of vehicle communication system, including in-vehicle, roadside, and aerial space units (UAV).
論文目次 摘要 II
表目錄 IX
圖目錄 X
第一章 緒論 1
1.1研究背景 1
1.2研究動機 5
第二章 背景介紹與文獻回顧 7
2.1無人飛行載具 7
2.1.1旋翼式無人飛行載具的發展 7
2.2軟體定義無線電 8
2.2.1軟體定義無線電的發展 9
2.2.2軟體定義無線電的架構 9
2.2.3支援軟體定義無線電硬體裝置 10
2.3 Raspberry Pi 10
2.4 USRP B200mini 11
2.5文獻歸納 12
2.6歸納小結 14
第三章 研究方法 15
3.1硬體研究架構 15
3.1.1 無人飛行載具的組成 16
3.1.2 機載電腦的系統 17
3.2 無人飛行載具系統整合方法 18
3.2.1 飛行控制板與樹莓派的整合 18
3.2.2 USRP與樹莓派的連接 19
3.3研究方式與步驟 20
3.3.1 傳送端設計架構 20
3.3.2 接收端設計架構 21
第四章 研究結果 23
4.1室內定點收發實作 25
4.1.1車輛機器的通道偵測程式 26
4.1.2 車輛機器的半雙工收發 26
4.1.3 無人飛行載具全雙工收發與擷取飛行資料 27
4.1.4 上傳資料至雲端 29
4.2 戶外定點收發實作 31
4.3戶外移動收發實作 32
4.4研究結果探討 36
第五章、結論 38
5.1 結論 38
5.2 未來研究建議 39
參考文獻 40

參考文獻 [1] C. Sommer and F. Dressler, Vehicular networking. Cambridge, United Kingdom Cambridge: University Press, 2014, pp. 199-200.
[2] Standard for Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks- Specific Requirements, IEEE Standard 802.11p, 2010.
[3] H. Lim, J. Park, D. Lee and H. J. Kim, “Build Your Own Quadrotor: Open-Source Projects on Unmanned Aerial Vehicles, ” IEEE Robotics & Automation Magazine, vol. 19, no. 3, pp. 33-45, Sep. 2012.
[4] Pixhawk.org., “Pixhawk Autopilot Introduction.” [Online].Available:
https://www.pixhawk.org/modules/pixhawk.
[5] W.-T. Chen and C.-H. Ho, “Spectrum monitoring with unmanned aerial vehicle carrying a receiver based on the core technology of cognitive radio – A software-defined radio design,” Journal of Unmanned Vehicle Systems, vol. 5, no. 1, pp. 1-12, 2017.
[6] 楊政城,“無人飛行載具自動飛行機載電腦平台開發,” 碩士論文,航空太空工程學系碩博士班,國立成功大學,2002.
[7] Pixhawk.org, “Pixhawk Autopilot Introduction.” 2017. [Online]. Available: https://www.pixhawk.org/modules/pixhawk.
[8] Dronecode.org, “Sensor Selection.” [Online]. Available: https://docs.px4.io/en/getting_started/sensor_selection.html.
[9] J. Mitola, "Software radios-survey, critical evaluation and future directions," [Proceedings] NTC-92: National Telesystems Conference, Washington, DC, 1992, pp. 13/15-13/23.
[10] R. Danymol, T. Ajitha and R. Gandhiraj, "Real-time communication system design using RTL-SDR and Raspberry Pi", 2013 International Conference on Advanced Computing and Communication Systems, 2013.
[11] N. G. Ghatwai, V. K. Harpale and M. Kale, "Vehicle to vehicle communication for crash avoidance system," 2016 International Conference on Computing Communication Control and automation (ICCUBEA), Pune, 2016, pp. 1-3.
[12] T.-H. Tang, Z.-P. Deng, S.-L. Zhou , L. Lei , H.-X. Zou, "Fast vehicle detection in UAV images "2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)
[13] H.-T.Xiang, L.Tian, "Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV)" , Biosystems Engineering.
[14] M. Pinkney, D. Hampel, and S. DiPierro, “Unmanned aerial vehicle (UAV) communications relay,” in Military Communications Conference,1996. MILCOM’96, Conference Proceedings, IEEE, vol. 1. IEEE, pp. 47–51
[15] P. Liu, A.-Y. Chen, Y.-N. Huang, J.-Y. Han, J.-S. Lai, S.-C. Kang, et al. (2014). A Review of Rotorcraft Unmanned Aerial Vehicle (UAV) Developments and Applications in Civil Engineering. Smart Structures and Systems. Smart Structures and Systems, 13(6), 1065–1094.
[16] J. Lianghai, M. Liu, A. Weinand and H.-D. Schotten, "Direct vehicle-to-vehicle communication with infrastructure assistance in 5G network," 2017 16th Annual Mediterranean Ad Hoc Networking Workshop, Budva, 2017, pp. 1-5.
[17] L. Wang, H.-L. Yang, J.-F. Long , K.-L. Wu, J.-M Chen "Enabling ultra-dense uav-aided network with overlapped spectrum sharing: potential and approaches ", IEEE Network ( Volume: 32 , Issue: 5 , September/October 2018 ) , pp. 85 – 91.
[18] Y.-M. Chen, L. Dong, and J.-S. Oh, "Realtime video relay for UAV traffic surveillance systems through available communication networks," IEEE Wireless Communications and Networking Conference, pp 2608-2612, WCNC, 2007
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-05起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw