進階搜尋


下載電子全文  
系統識別號 U0026-3007201913582900
論文名稱(中文) 有限元素法模擬液壓型阻尼器應用於科技廠房之研究
論文名稱(英文) Application of Finite Element Method to Simulate Viscous Dampers Applied to High-tech Factories
校院名稱 成功大學
系所名稱(中) 土木工程學系碩士在職專班
系所名稱(英) Department of Civil Engineering (on the job class)
學年度 107
學期 2
出版年 108
研究生(中文) 李正傑
研究生(英文) Cheng-Chieh Li
學號 N67061158
學位類別 碩士
語文別 中文
論文頁數 79頁
口試委員 指導教授-朱聖浩
口試委員-鍾興陽
口試委員-侯琮欽
口試委員-蘇于琪
中文關鍵字 地震  有限元素法  高科技廠房  液壓型阻尼器  基底剪力  垂直向力 
英文關鍵字 earthquake  finite element analysis  High-tech factory  Fluid Viscous Damper  base shear  axial force 
學科別分類
中文摘要 目前科技業在台灣扮演很重要的角色,因此對於科技廠房抵抗地震需求也同時提高,但台灣地理位置位於地震帶上,所以如何抵抗地震的侵襲,將是一件很重要的課題。高科技廠房經常使用斜撐的鋼構件來支撐,因此萌生是否可以使用液壓型阻尼器來做為補強之方法。
本研究從最基礎的阻尼力公式開始推導其理論解,同時使用電腦輔助分析,此分析的依據是利用有限元素法的方式呈現阻尼力的樣態,透過不同α值的設定,可以得到幾組數據有關位移與時間的關係,可以藉由得到的數據,分析其理論解與有限元素法電腦輔助分析之間的差異性,若數值相近,則可以使用有限元素法電腦輔助分析之方式,模擬液壓型阻尼器之行為模式。電腦輔助分析程式由 朱聖浩教授研究團隊所開發,分析程式與研究成果皆為公開資源。
本研究將此有限元素法電腦輔助分析方式,模擬成液壓型阻尼器,置放進一個現有的高科技廠房模型中,本論文設定兩種情況之地表最大加速度,分別加載在此高科技廠房之模型中,同時討論沒放阻尼器與有放置阻尼器之X向、Y向基底剪力及Z向垂直向力與時間的關係,將其基底剪力及垂直向力與時間的關係圖整理出來,便可了解裝設液壓型阻尼器,在此高科技廠房模型中,是否產生基底剪力及垂直向力下降的效果,得到數據結果佐證,即可證明液壓型阻尼器放置於高科技廠房之成效。

關鍵字:地震、有限元素法、高科技廠房、液壓型阻尼器、基底剪力、垂直向力。
英文摘要 SUMMARY
At present, the technology industry plays a very important role in Taiwan. Therefore, the demand for earthquake resistance of technology factories is also increasing. However, Taiwan is located in the seismic zone, so how to resist the earthquake will be an important issue. High-tech factories are often supported by steel members that are braced, so it is possible to use fluid viscous dampers as a means of reinforcement.
This study starts from the most basic damping force formula to derive its theoretical solution, and uses computer-aided analysis. The basis of this analysis is to use the finite element method to present the damping force. After several sets of data comparison, it can be known the gap between the theoretical solution and the finite element method. If the values are similar, the finite element method computer-assisted analysis can be used to simulate the behavior of the fluid viscous dampers. The computer-aided analysis was developed by the research team of Shen-Haw Ju, and the analytical programs are open and free to use.
In this study, the computer-assisted analysis method of finite element method is simulated into a fluid viscous damper and placed in an existing high-tech factory model. This paper sets the maximum acceleration of the ground in two cases and loads it in this high-tech factory. In this model, when the damper is placed, the X-direction base shear force, the Y-direction base shear force, and the Z-direction vertical force are recorded. In addition, when the damper is not placed, the X-direction base shear force, the Y-direction base shear force, and the Z-direction vertical force are recorded. The relationship between the base shear force and the vertical force and time is sorted out. In this high-tech factory model, through the above experimental data, we can know whether the installation of a fluid viscous damper is effective in helping to resist earthquakes.

Keywords: earthquake, finite element analysis, High-tech factory, Fluid Viscous Damper, base shear, axial force.

INTRODUCTION
Taiwan is located in the Pacific Rim seismic zone. It is pushed by the Eurasia plate and the Philippine Sea plate. Many earthquakes occur every year. However, according to the current technological conditions, it is difficult for us to grasp the earthquake in advance. For important buildings, such as nuclear power plants, buildings for public use, high-tech factories, hospitals, buildings providing emergency shelters. We must all strengthen these buildings to avoid the huge damage caused by the earthquake. In view of this, how to improve the building's ability to resist earthquakes will be our primary goal. The high-tech factories is a very important industry in Taiwan, so the demand for technology plants is becoming more and more demanding, especially for factories that produce wafers. How to overcome this problem, it must be faced with a very cautious attitude.

MATERIALS AND METHODS
Using the finite element method program numerical simulation, the relationship between time and displacement in different α values is analyzed, and the theoretical solutions that have been derived are analyzed to compare the differences. The model of the damper is established by the finite element method. Add the model to the technology factory, give the seismic force effect, record the base shear force separately without the damper, and with the damper, collect this data and analyze it.

RESULTS AND DISCUSSION
After analyzing the two cases of TS = 0.8(s) and TS = 1.4(s), it can be observed that the effect of adding the damper affects the X-base shear force, the Y-direction base shear force, and the Z-direction axial force. The reduction is not high, and even some values will increase. In view of the economic benefit, it does not meet the expected value, and the added cost of the damper is not obvious in reducing the X- and Y-direction base shear forces and the Z-direction axial force. Thus, the general diagonal strut structure is used. It seems that it can already meet the needs of use.

CONCLUSION
1.Using a finite element computer simulation analysis to simulate a fluid viscous damper, the results are similar to the theoretical solution and have reference value.
2.Select the parameter α=0.4, damping coefficient C=2377 kN〖(s/m)〗^0.4. Install the fluid viscous damper in the form of a diagonal bracing, placed in the Y direction of the high-tech factory of this paper model, it couldn’t obviously help.
3.For this type of high-tech factory, the ordinary steel frame can be braced, because the cost of fluid viscous dampers is not cheap, but it can not get the effect it deserves. The base shear force in the X direction or the base shear force in the Y direction, or the vertical direction force in the Z direction, is not significantly reduced. This is very uneconomical, so it is recommended to use the steel frame bracing method.
4.Even if a fluid viscous damper is added, the base shear force in the X direction and the Y direction sometimes rises, indicating that it is not a good method to increase the damping force.
5.First experiment with Ts=0.8, then increase to Ts=1.4, and the ground acceleration will increase accordingly, and the overall response will be above the base shear force. At this time, a fluid viscous damper will be added to deal with the base shear force. In the larger case, the magnitude of the reduction should be obvious, but from the experimental data, there is no obvious help for reducing the base shear force.
論文目次 摘要 I
Extended Abstract II
誌謝 V
目錄 VI
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 研究的背景與目的 2
1.3 本文的內容 3
第二章 文獻回顧 4
2.1 減震系統型態之簡介 4
2.2 液壓型阻尼器簡介 4
2.3 液壓型阻尼器之分析 6
2.4 黏性阻尼器安裝型式之簡介 8
2.5 國際振動標準之簡介 11
第三章 公式推導之理論解 14
3.1 推導前之假設條件 14
3.2 當 α=1時,位移之理論解 15
3.3 當 0<α<1時,位移之理論解 15
第四章 有限元素電腦模擬數值 17
4.1 電腦模擬之參數 17
4.2 當α=0.2 19
4.3 當α=0.3 20
4.4 當α=0.4 22
4.5 當α=0.5 23
4.6 當α=0.6 25
4.7 當α=0.7 26
4.8 當α=0.8 28
4.9 當α=0.9 29
4.10 當α=1.0 31
4.11 當α=0.25 32
4.12當α=0.35 34
4.13當α=0.45 35
4.14 數據分析總結 37
第五章 液壓型阻尼器對高科技廠房之影響分析 38
5.1 高科技廠房之設計理念介紹 38
5.2 高科技廠房之模型介紹 39
5.3 高科技廠房之有限元素法模擬 42
5.4 地震力設定 46
5.5 地震作用下液壓型阻尼器對高科技廠房之影響 51
第六章 結論與建議 67
6.1結論 67
6.2建議 68
參考文獻 69
附錄一 73

參考文獻 [1] 林立偉, 「半主動式液流阻尼器之研發與試驗分析」, 國立交通大學土木工程學系碩士論文,中華民國92年6月.
[2] Yao-J, T. P., Concept of structure control, Structure Division, Volume 98, No. ST7, pp. 1567-1574, 1972.
[3] 鐘立來, 「結構控制之狀態空間系統」, 結構工程期刊,第八卷第二期, pp. 89-98, 1993.
[4] Whittaker, A. S., Constantnou M. C., and Kircher, C. A., Seismic Rehabilitation Using Supplemental Damping System, 〖11〗^thWorld conference on Earthquake Engineering, pp. 219-226, 1996.
[5] Abdel-Rohman, M., and Leipholz, H. H., Active Control of Flexible Structures, Journal of the Structure Division, ASCE, Volume 104, pp. 1251-1266, 1978.
[6] 「建築物耐震規範與解說」, 內政部100.1.19台內營字第0990810250號令修正「建築物耐震設計規範及解說」部分規定,第十章10.2節,自中華民國一百年七月一日生效。
[7] Whittaker, A., and Constantinou, M. C., Fluid Viscous Dampers for Building Construction, First International Symposium on Passive Control, Tokyo Institute of Technology, pp. 133-142, 2000.
[8] Chang, K. C., Soong, T. T., Oh, S. T., and Lai, M. L., Seismic Behavior of Steel Frame with Added Viscoelastic Dampers, Journal of Structural Engineering, ASCE, Volume 121, No.10, pp. 1418-1426, 1995.
[9] Kasai, K., Fu, Y. M., and Watanabe, A., Passive Control Systems for Seismic Damage Mitigation, Journal of Structural Engineering, ASCE, Volume 124, No.5, pp. 501-512, 1998.
[10] Whittaker, A., Bertero V. V., and Thompson, C., Earthquake Simulator Testing of Steel Plate Added Damping and Stiffness Elements, UCB/EERC-89/02, EERC, U.C.Berkeley, 1989.
[11] 蔡克銓, 「三角形鋼板消能器之理論試驗與應用」,結構工程第八卷第四期, pp. 3-19, 1993.
[12] 林天俊, 「黏滯消能結構之最佳化設計」, 國立交通大學土木工程研究所,碩士論文,中華民國91年6月.
[13] Taylor, D. P., Fluid Damper for Applications of Seismic Energy Dissipation and Seismic Isolation, Eleventh Word Conference on Earthquake Engineering, No 798, 1996.
[14] 盧思源, NEHRP Guidelines and Commentary for the Seismic Rehabilitation of Buildings, Reports No. 273 and 274, Washington, D. C., 1997.
[15] 李永峰, 「足尺寸液流阻尼器之研發」, 國立成功大學土木工程研究所博士論文, pp. 9-15,中華民國95年7月.
[16] 徐敏哲, 「液流阻尼器菱形機構之設計及應用」, 國立成功大學土木工程研究所碩士論文, pp. 4-16,中華民國92年6月.
[17] 戴偉鈞, 「國內減震黏性阻尼器安裝之缺點改進與相對設計理論推導」, 國立台灣科技大學營建工程系碩士學位論文, pp. 5-19 , 中華民國105年6月.
[18] Sajjan, P., and Biradar, P., Study on the Effect of Viscous Damper for Rcc Frame Structure, International Journal of Research in Engineering and Technology, Volume 05, Issue 09, pp. 31-36, 2016.
[19] Alahi, F. N., and Vatandoost, M., Single Diagonal Precast Prestressed Concrete Bracing for Strengthening Existing Concrete Frames, International Journal of Advanced Structural Engineering, 2018.
[20] Ramin, K., Seismic Behavior of Steel Off-Diagonal Bracing System (ODBS) Utilized in Reinforced Concrete Frame, Journal of Structures, Volume 2014, Article ID 403916, pp. 2-18, 2014.
[21] Gordon, C. G., Generic Vibration Criteria for Vibration-Sensitive Equipment., Proceedings of International Society for Optical Engineering (SPIE), 1999.
[22] 沈周賢, 「以高鐵振動特性量測車速之研究」, 國立成功大學土木工程研究所碩士論文, pp. 40-44,中華民國98年7月.
[23] Guo, X. X., Development and application of micro-vibration control technology for high-tech factories buildings., Ph.D. Thesis, National Cheng-Kung University, Tainan, Taiwan, 2019.
[24] 東運生技工程有限公司,阻尼器參數對照表,http://www.townwin-e.com/product1.html#, (7/24/2019).
[25] Ju, S. H., Kuo, H. H., and Ni, S. H., Vibration Induced by Moving Cranes in High-Tech Buildings due to Rail Pad Materials, Hindawi, Shock and Vibration, Volume 2018, Article ID 8623913, pp. 1-9, 2018.
[26] Newmark, N. M., A method of computation for structural dynamics, Journal of Engineering Mechanics, ASCE, Volume 85, pp. 67–94, 1959.
[27] 林永盛, 「基礎結構動力(下冊)」, 文笙書局, pp. 21-31,中華民國105年3月再版.
[28]Gasparini, D., and Vanmarke E., Massachusetts Institute of Technology, The University of California, Berkeley, 1976.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-16起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-16起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw