進階搜尋


 
系統識別號 U0026-3007201816330600
論文名稱(中文) 類劍型船艏於延繩釣漁船之應用
論文名稱(英文) Application of the Quasi-Sword-Bow for Long Liner
校院名稱 成功大學
系所名稱(中) 系統及船舶機電工程學系
系所名稱(英) Department of Systems and Naval Mechatronic Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 黃書偉
研究生(英文) Shu-Wei Huang
學號 P16054086
學位類別 碩士
語文別 中文
論文頁數 72頁
口試委員 指導教授-方銘川
口試委員-邱逢琛
口試委員-方志中
中文關鍵字 類劍型船艏  球狀體  Shipflow  ITTC  耐海性 
英文關鍵字 Quasi-Sword-Bow  bulb  ITTC  ship motion 
學科別分類
中文摘要 由於國際油價上漲,節省能源是現在的趨勢,以往漁船會在船艏加裝球狀體,以減少興波阻力,降低耗油量。但是,球型艏通常會有固定設計點,而漁船在出海捕魚時,會因為各種因素導致其船舶姿態變化,偏離原先設計點,導致球型艏的消波效果降低,甚至會造成反效果,故本研究希望設計一種新型船艏(類劍型船艏)來避免上述情況。
本研究以某裝有球狀體之延繩釣漁船為母船,再以盡量不改變船體性能前提下,對其船艏進行改良。接著以CFD軟體(Shipflow)模擬其興波阻力,以及利用ITTC經驗公式求得之摩擦阻力,與母船相互比較,找出各種姿態下最適合的設計船艏。至於如何設計船艏,才能使節能效果更好,由本文系列之結果整理出以下結論:1.將設計吃水處的水線延伸至球型艏之凸出球狀體位置,使球狀體沒有突出艏部(類劍型)2.設計吃水之水線面形狀要避免波浪堆積3.球狀體形狀為倒三角形效果較佳4.球狀體體積越大且越靠近水面效果越好。
又因為漁船於捕魚航程中之各種姿態所佔時間比例不同,故亦時間比重列入考量,得到此次設計中NT5為最適合此趟航程之漁船。其中,由於有改變船體形狀(船艏),為得知船體於波浪中之運動與附加阻力是否有所變化,故以二維截片理論配合本研究室開發之程式模擬檢視船舶相關之耐海性。
英文摘要 Saving energy has been the worldwide trend due to increasing price of international oil. People usually installed bulb at the bow of fishing vessel in the past for decreasing the wave-making resistance and oil consumption. But, bulbous bow is usually designed at the fixed draft and trim. However, while doing fishing on the sea, the fishing vessel will change the original draft and trim because of various factors which change the sailing attitude. It will reduce the advantage of bulbous bow, and even cause opposite effect. Therefore, aim of this paper is to avoid the above disadvantage by designing a new type bow(Quasi-Sword-Bow).
This article takes a long liner with the bulbous bow at the bow as the original ship. As a prerequisite, to keep the characteristic of ship, and to improve the bow shape of ship. Then, we calculate the wave-making and frictional resistance in different speeds by using Computational Fluid Dynamics (CFD) software and ITTC-1957 formula respectively. To find the most suitable bow shape of ship in different sailing attitude, we compare the above value with the original ship. Finally, according to the data of this paper, we can reach the following way by which we design the bow of ship in order to make the effect of energy-saving better. See the following ways: 1. Extending the waterline of the design draft to the position of bulb which makes the bulb not exceed the bow of ship. 2. The shape of waterline of design draft must be designed to prevent the wave from being accumulated. 3. The better shape of bulb is designed to be inverted triangle shape. 4. The volume of bulb should be bigger and closer to the surface of water.
However, because the proportions of the time of various sailing attitudes are different, we need to take them into consideration. We find that NT5 is the most suitable bow of ship based on an assumed fishing voyage. During the process, we obtained the modified shape of ship, and we also analyze the related ship motion and added resistance by Strip Theory and Potential Theory to investigate the seakeeping characteristics.
論文目次 第一章 緒論 1
1.1研究背景與目的 1
1.2文獻回顧 3
1.3本文架構 6
第二章 新型船艏設計與概念 7
2.1新型艏船型幾何限制條件 7
2.2設計與修改船艏流程 10
第三章 船舶阻力與耗油量計算 15
3.1船舶阻力 15
3.2實際航行之耗油量評估 17
第四章 SHIPFLOW理論 19
4.1計算流體力學簡述 19
4.2 SHIPFLOW阻力計算之理論分析 21
4.2.1座標系統 21
4.2.2邊界條件 21
4.2.3數值方法 23
第五章 耐海性分析 25
第六章 結果與討論 29
6.1母船與新型船艏之分析比較 29
6.2實際航行之阻力與耗油比較 48
6.3船舶運動與附加阻力 53
第七章 結論與未來展望 57
參考文獻 59
附錄 62
參考文獻 [1] Y. Okumoto, Y. Takeda, and K. Hiyoku, (1985). [Modern Hull Structure Design System “COSMOS”]. ICCAS’85 Trieste, Italy, Sep., pp.275-284.
[2] 卓永堂(2003),「球型船艏對船舶運動與阻力之影響評估」,國立成功大學造船及船舶機械工程學研究所,碩士論文
[3] 何永順(2013),「球形艏優化對於貨櫃船低速航行油耗的影響」,國立臺灣海洋大學輪機工程學研究所,碩士論文
[4] Takeshi U. , Yasunori I. , Masaki A. , Kazuyuki E. , (2004)” Verification of Ax-Bow Effect based on Full Scale Measurement ” Journal of the Kansai Society of Naval Architects, No.241, pp.33-40.
[5] 程維淵(2011),「箭艏於貨櫃船線形最佳化設計應用之研究」,國立台灣大學工程科學及海洋工程學研究所,碩士論文
[6] 顏維佐(2013),「有感設計流程於劍艏船型阻力性能改善之整合應用」,國立台灣大學工程科學及海洋工程學研究所,碩士論文
[7] 周家宏(2002),「最佳化船型預測之研究」,國立成功大學造船及船舶機械工程研究所,碩士論文
[8] 楊啟生(2004),「鮪釣漁船艏艉船型創新設計之研究」,國立成功大學系統及船舶機電工程學碩研究所,碩士論文
[9] Prasanta K Sahoo , Marcos Salas & Adam Schwetz, (2007) “ Practical evaluation of resistance of high-speed catamaran hull forms—Part I, Ships and Offshore Structures”,pp.307-324
[10] 劉奕涵 (2016),「同排水量型三體船與雙體船之流體動力分析比較」,國立成功大學系統及船舶機電工程學碩研究所,碩士論文
[11] Korvin-Kroukovsky B.V., & Jacobs, W.R., (1952) “Pitching and Heaving Motions of a Ship in Regular Waves”, SNAME Trans. 65, pp. 590-632
[12] Salvesen, N., Tuck, E.O. and Faltinsen, O.M., (1970) “Ship Motions and Sea Loads,” Transactions of the Society of Navel Architects and Marine Engineers, Vol.78.
[13] Salvesen, N., (1974)”Second-order Steady-state Force and Moments on a Surface Ships in Oblique Regular Waves”, Int. Symp. On Dynamics of Marine Vehicles and Structures in Waves, Univ. College, London
[14] Fang, M.C., Lee, M.L. and Lee, C.K., (1993) “Time Simulation of Water Shipping for a Ship Advancing in Large Longitudinal Waves”, Journal of Ship Research, Vol. 37, No.2, pp. 126-137,June
[15] Fang, M.C., (1991)”Second-Order Steady Force on a Ship Advancing in Waves”, Int. Shipbulid. Progr.,38, No.413,pp.73-93
[16] 李雅榮等合譯(1992),「商船設計基礎」,國立編譯館主編,大中國圖書公司印行
[17] Dawson, C. W., (1977) “A Practical Computer Method for Solving Ship-Wave Problems,” 2nd International Conference on Numerical Ship Hydrodynamics, Berkeley,.
[18] Kim, C.H., Chou, F.S. and Tien, D., (1980)”Motion and Hydrodynamic Loads of a Ship Advancing in Oblique Waves”, Trans. SNAME, VOL. 88,pp.225-256
[19] Fang, M.C. and Kim, C.H., (1986)”Hydrodynamically Coupled Motions of Two Ships Advancing in Oblique Waves”, Journal of Ship Research,Vol.30,No.3,pp.159-171
[20] Newmen, J.N., (1970)”The Second-order Time-average Vertical Force on a Submerged Body Moving Beneath a Regular Wave System”, unpublished
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-09-16起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-09-16起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw