進階搜尋


下載電子全文  
系統識別號 U0026-3007201815581700
論文名稱(中文) 以多種光學方法分析SiGe超薄膜的結構演進
論文名稱(英文) Multi-optical method on analyzing the structural evolution of SiGe ultrathin layer
校院名稱 成功大學
系所名稱(中) 物理學系
系所名稱(英) Department of Physics
學年度 106
學期 2
出版年 107
研究生(中文) 吳宗哲
研究生(英文) Zong-Zhe Wu
學號 L26051100
學位類別 碩士
語文別 英文
論文頁數 56頁
口試委員 指導教授-羅光耀
口試委員-吳忠霖
口試委員-楊展其
口試委員-吳秋賢
中文關鍵字 硼摻雜矽鍺  快速熱退火  紫外光拉曼  X射線光電子能譜  二次諧波 
英文關鍵字 B-doped SiGe  Rapid thermal annealing  UV Raman  X-ray photoelectron spectroscopy  Second harmonics generation 
學科別分類
中文摘要 現今的半導體產業,如何在不斷微縮元件尺寸的同時製造超淺層介面及保持優良的製造品質和電性是很重要的課題,也非常的困難,在7奈米以下製程的場效電晶體,其源、汲極從原本由硼或磷離子佈植方法製造,改由化學氣相沉積矽鍺合金和摻雜的方式,而傳統半導體製程必備的快速熱退火製程在這種條件下的行為反應變成了未知數,鍺的聚集與擴散也成為研究的重點,而在製程上常用高解析度穿透式電子顯微鏡來觀察其問題所在,但此為破壞性的分析方法。本實驗以多種光學分析包括紫外光拉曼、X射線光電子能譜,及反射式二次諧波提供非破壞性的結構分析方法,對硼摻雜矽鍺超薄膜及退火後的結構進行分析,了解矽鍺合金結構的光學特性及高量硼摻雜對結構以及退火後行為的影響。
  在本實驗中首先使用無硼摻雜的純矽鍺薄膜並分析其光譜做為參考,然後加上不同硼鍺濃度比例的條件,觀察其在硼摻雜後的光譜變化及其含義,並使用快速熱退火處理樣本,同樣使用光學方法分析其結構演進,最後總結所有光譜資訊,了解硼摻雜矽鍺超薄膜的結構變化。
英文摘要 In order to reduce the scale of devices, the further scale down of transistors is a trend of semiconductor fabrication. It is important that fabricate ultra-shallow junction keep high fabrication quality and electrical properties with the reducing of transistors scale. In under 7 nm process, the source/drain of field effect transistors (FETs) fabricating method varied from B or P-implanted Si to chemical vapor deposition (CVD) SiGe alloy. Under this change, the behaviors after necessary rapid thermal annealing (RTA) has become an unknown topic for study. The aggregation and diffusion of Ge also become a key points for research. In the real process, they usually used high resolution transmission electron microscopy (HRTEM) to observe the problem, but this is s destructive analysis method. In this thesis, I used multi-optical method including UV Raman, X-ray photoelectron spectroscopy (XPS), and Reflective second harmonics generation (RSHG) to analyze the structure of the B-doped SiGe ultrathin film, and provided some non-destructive structure analyzing technique. Furthermore, the behaviors of B-doped SiGe film after RTA, the optical properties of SiGe alloy, and the influence caused by high B dopant are also the destination of this research.
In this thesis, I first used pure SiGe thin film and analyzed its spectra as reference. Then I compared this to other B-doped SiGe thin film, and found the variation on the spectra. Second, I applied RTA on these samples and used optical method to analyze the evolution of them. Finally, I would combine these information form spectra and realize the structure evolution of B-doped SiGe ultrathin film.
論文目次 Chapter 1 Introduction ……………………………………………………………...……1
Chapter 2 Theory and analysis methods ...……………...………...………………..……4
2.1 Properties of novel transistor material : SiGe ………………………………….4
2.2 Ultraviolet Raman (UV Raman) …………………………………………..…...8
2.3 X-ray photoelectron spectroscopy (XPS) ……………………………………..12
2.4 Reflective second harmonics generation (RSHG) ………………………….....16
Chapter 3 Experiments ………………………………………………………………….21
3.1 SiGe samples condition …………………………………………………….…21
3.2 UV Raman ………………………………………………………………….…22
3.3 XPS …………………………………………………………………………....23
3.4 RSHG system …………………………………………………………………25
Chapter 4 Results and discussions ………………………………………………...……27
4.1 UV Raman ………………………………………………………………...…..27
4.1.1 L0 series ...…………………………………………………………..27
4.1.2 L1 series …………………………………………………………….30
4.1.3 L2 series …………………………………………………………….34
4.2 XPS ………………………………………………………………………...….37
4.2.1 L0 series …………………………………………………………….37
4.2.2 L1 series …………………………………………………………….38
4.2.3 L2 series …………………………………………………………….40
4.3 RSHG ………………………………………………………………………....42
4.3.1 L0 series …………………………………………………………….42
4.3.2 Raw data and fitting of L1 and L2 series …………………………...43
4.3.3 The trend of fitting coefficients in L1 and L2 series ……………….47
Chapter 5 Conclusions …………………......……………………………………………51
Reference …………………………………………………………………………………53
參考文獻 [1] Auth, Chris, et al. "A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors." VLSI technology (VLSIT), 2012 symposium on. IEEE, 2012.
[2] Yamaguchi, S., et al. "Scalability comparison between raised-and embedded-SiGe source/drain structures for Si 0.55 Ge 0.45 implant free quantum well pFET." Microelectronics Reliability 83 (2018): 157-161.
[3] Hellings, Geert, et al. "The implant-free quantum well field-effect transistor: Harnessing the power of heterostructures." Thin Solid Films 520.8 (2012): 3326-3331.
[4] Lizzit, Daniel, et al. "Analysis of the performance of n-type FinFETs with strained SiGe channel." IEEE Transactions on Electron Devices 60.6 (2013): 1884-1891.
[5] Loo, Roger, et al. "Strained Ge FinFET structures fabricated by selective epitaxial growth." Silicon-Germanium Technology and Device Meeting (ISTDM), 2014 7th International. IEEE, 2014.
[6] Hashemi, Pouya, et al. "Strained Si 1− x Ge x-on-insulator PMOS FinFETs with excellent sub-threshold leakage, extremely-high short-channel performance and source injection velocity for 10nm node and beyond." VLSI Technology (VLSI-Technology): Digest of Technical Papers, 2014 Symposium on. IEEE, 2014.
[7] Chidambarrao, Dureseti, and Brian J. Greene. "Structure and method for improved stress and yield in pFETs with embedded SiGe source/drain regions." U.S. Patent No. 7,358,551. 15 Apr. 2008.
[8] Chen, Xiangdong, et al. "Vertical P-MOSFETs with heterojunction between source/drain and channel." Device Research Conference, 2000. Conference Digest. 58th DRC. IEEE, 2000.
[9] Eneman, Geert, et al. "Scalability of the si/sub 1-x/ge/sub x/source/drain technology for the 45-nm technology node and beyond." IEEE Transactions on Electron Devices 53.7 (2006): 1647-1656.
[10] Shintri, Shashidhar, et al. "Effects of high in-situ source/drain boron doping in p-FinFETs on physical and device performance characteristics." Materials Science in Semiconductor Processing82 (2018): 9-13.
[11] Arimoto, Keisuke, et al. "Hole mobility in strained Si/SiGe/vicinal Si (110) grown by gas source MBE." Journal of Crystal Growth468 (2017): 625-629.
[12] Liao, Chin I., et al. "High quality SiGe: B of high Ge layer for 14nm and beyond FINFET processes." ECS Transactions 58.7 (2013): 159-162.
[13] Bardon, M. Garcia, et al. "Layout-induced stress effects in 14nm & 10nm FinFETs and their impact on performance." VLSI Technology (VLSIT), 2013 Symposium on. IEEE, 2013.
[14] Zhong, Min, Shou Mian Chen, and David Wei Zhang. "Investigation of in situ boron-doping in SiGe source/drain layer growth for PMOS devices." Journal of Nanomaterials 2015 (2015).
[15] Qi, Yi, et al. "In-Situ Boron Doped SiGe Epitaxy Optimization for FinFET Source/Drain." ECS Transactions 75.8 (2016): 265-272.
[16] Fair, Richard B., and J. C. C. Tsai. "Theory and Direct Measurement of Boron Segregation in SiO2 during Dry, Near Dry, and Wet O 2 Oxidation." Journal of The Electrochemical Society 125.12 (1978): 2050-2058.
[17] 蔣曉白. "半導體積體電路生產技術從摻雜技術-離子佈植 (Ion Implantation) 談起." 國家奈米元件實驗室奈米通訊 20.4 (2013): 28-31.
[18] Huber, Walter. "Semiconductor wafer fabrication with improved control of internal gettering sites using rapid thermal annealing." U.S. Patent No. 4,851,358. 25 Jul. 1989.
[19] Lord, H. A. "Thermal and stress analysis of semiconductor wafers in a rapid thermal processing oven." IEEE Transactions on Semiconductor Manufacturing 1.3 (1988): 105-114.
[20] Grim, Karen A., et al. "Procedure for rapid thermal annealing of implanted semiconductors." U.S. Patent No. 5,011,794. 30 Apr. 1991.
[21] 許舒涵, 羅廣禮, 朱俊霖, 沈奕伶, 姚潔宜, 郭美玲, ... & 林昆霖. (2013). 奈米鍺元件之製備. 國家奈米元件實驗室奈米通訊, 20(1), 18-25.
[22] 黃竣祥, & 趙天生. (2005). 新型低溫複晶矽非揮發性奈米鍺晶體捕獲儲存層記憶體元件 (Doctoral dissertation).
[23] Datta, S., et al. "High mobility Si/SiGe strained channel MOS transistors with HfO/sub 2//TiN gate stack." Electron Devices Meeting, 2003. IEDM'03 Technical Digest. IEEE International. IEEE, 2003.
[24] Mizuno, Tomohisa, et al. "Advanced SOI p-MOSFETs with strained-Si channel on SiGe-on-insulator substrate fabricated by SIMOX technology." IEEE Transactions on Electron Devices48.8 (2001): 1612-1618.
[25] Rim, K., et al. "Enhanced hole mobilities in surface-channel strained-Si p-MOSFETs." Electron Devices Meeting, 1995. IEDM'95., International. IEEE, 1995.
[26] Rim, Kern, Judy L. Hoyt, and James F. Gibbons. "Fabrication and analysis of deep submicron strained-Si n-MOSFET's." IEEE Transactions on Electron Devices 47.7 (2000): 1406-1415.
[27] Verdonckt-Vandebroek, Sophie, et al. "SiGe-channel heterojunction p-MOSFET's." IEEE Transactions on Electron Devices 41.1 (1994): 90-101.
[28] Krishnan, S., et al. "A manufacturable dual channel (Si and SiGe) high-k metal gate CMOS technology with multiple oxides for high performance and low power applications." Electron Devices Meeting (IEDM), 2011 IEEE International. IEEE, 2011.
[29] Lee, Minjoo L., et al. "Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors." Journal of Applied Physics 97.1 (2005): 1.
[30] Yoo, Woo Sik, Jae Hyun Kim, and Seung Min Han. "Multiwavelength Raman characterization of silicon stress near through-silicon vias and its inline monitoring applications." Journal of Micro/Nanolithography, MEMS, and MOEMS 13.1 (2014): 011205.
[31] Lee, Fu-Ying, et al. "The chemical states and atomic structure evolution of ultralow-energy high-dose Boron implanted Si (110) via laser annealing." Scientific reports 7.1 (2017): 13022.
[32] Langdo, T. A., et al. "SiGe-free strained Si on insulator by wafer bonding and layer transfer." Applied physics letters 82.24 (2003): 4256-4258.
[33] Cerdeira, F., et al. "Raman scattering from Ge x Si1− x/Si strained‐layer superlattices." Applied Physics Letters 45.10 (1984): 1138-1140.
[34] Welser, J., et al. "Strain dependence of the performance enhancement in strained-Si n-MOSFETs." Electron Devices Meeting, 1994. IEDM'94. Technical Digest., International. IEEE, 1994.
[35] Pagès, O., et al. "Re-examination of the SiGe Raman spectra: Percolation/one-dimensional-cluster scheme and ab initio calculations." Physical Review B 86.4 (2012): 045201.
[36] Prabhakaran, K., and T. Ogino. "Oxidation of Ge (100) and Ge (111) surfaces: an UPS and XPS study." Surface Science 325.3 (1995): 263-271.
[37] Delabie, Annelies, et al. "Effective electrical passivation of Ge (100) for high-k gate dielectric layers using germanium oxide." Applied physics letters 91.8 (2007): 082904.
[38] Franken, eg PA, et al. "Generation of optical harmonics." Physical Review Letters 7.4 (1961): 118.
[39] Richmond, Geraldine L. "Optical second harmonics generation as an in-situ probe of electrochemical interfaces." Electroanalytical Chemistry 17 (1991): 97-180.
[40] Sipe, J. E., D. J. Moss, and H. M. Van Driel. "Phenomenological theory of optical second-and third-harmonic generation from cubic centrosymmetric crystals." Physical Review B 35.3 (1987): 1129.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-01-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw