進階搜尋


下載電子全文  
系統識別號 U0026-3007201815103100
論文名稱(中文) 液態多孔噴注交互作用對超音速燃燒流場影響之數值模擬分析
論文名稱(英文) Numerical simulations and analyses of influences of the interaction of multiple liquid fuel injections on supersonic combustion flow
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 106
學期 2
出版年 107
研究生(中文) 蔡昊翰
研究生(英文) Hao-Han Tsai
學號 P46051026
學位類別 碩士
語文別 中文
論文頁數 140頁
口試委員 指導教授-江滄柳
口試委員-袁曉峰
口試委員-劉正芳
中文關鍵字 超音速燃燒衝壓引擎  燃料噴注  數值模擬 
英文關鍵字 Supersonic flow  Fuel injection  Numerical simulation 
學科別分類
中文摘要 超音速燃燒流場極為複雜,涉及噴注與主流間包括震波、迴流區與燃燒等複雜現象。因受限於燃燒室長度,故反應需在短時間內完成,否則燃料便會流出,導致燃燒效率不佳。為了提升整體燃燒效率採用多孔噴注,使燃料能平均散佈於燃燒室。為了分析多孔噴注之交互作用,本研究探討多孔噴注之幾何參數對超音速燃燒流場現象之影響,以噴注間距與噴注孔直徑之比值(l/d值) 為參數進行探討。孔徑為0.5mm時,分析單噴注與雙噴注l/d=10、15及20之差異。研究結果顯示,隨著噴注間距縮小,噴注間之交互作用也隨之增強,使震波相交處壓力增高,可促進短距離煤油液滴破碎,但會破壞尾流對之結構,使長距離破碎效果降低。當噴注間距較小,使噴注後方煤油堆積,使空氣無法順利進入噴注間,而沒有足夠之氧氣進行反應;太遠又會因無煤油阻擋而流速過快,導致不利燃燒反應進行。其中,單噴注之燃燒反應最好,燃燒效率最高,雙噴注會互相干擾,使燃燒現象較不穩定,而l/d=15能兼具氧氣供給與低流速反應區之優點。
英文摘要 Supersonic combustion flow field is an extremely complex phenomenon, involving a jet interacting with a main stream, such as occurs during shock waves and combustion as well as in recirculation zones. Due to the limitation of the length of a combustion chamber, the reaction must complete within a short time; otherwise, the fuel will flow out, resulting in poor combustion efficiency. In order to improve combustion efficiency, multiple liquid fuel injections are used to spread fuels evenly in the combustion chamber. In order to analyze the interaction of multiple injections, this study investigated the influence of the geometric parameters of multiple injections on the supersonic combustion flow field phenomenon. The ratio of the injection distance to the diameter of the injection hole (l/d value) is discussed as a parameter. With an injection hole diameter of 0.5 mm, a comparison between a single jet and a double jet l/d=10, 15, and 20 is made. The results show that as the distance of the injections is reduced, the interaction between the jets is enhanced, so the pressure at the intersection of the shock waves increases, which promotes breaking of the kerosene droplets in the short distance. Long distances result in the destruction of the structure of the vortex pair and cause the effect of the broken droplets to be reduced. When the injection distance is small, the kerosene piles up behind the jet, so air cannot mix with the kerosene smoothly, and there is not enough oxygen for the reaction. On the other hand, injection distances that are too far are due to a lack of a kerosene barrier to the main stream, which causes the velocity of the stream to become too
fast, resulting in an adverse combustion reaction. In this study, single injections exhibit the best combustion reaction and highest combustion efficiency. The double injections were found to interfere with each other, which resulted in less stable combustion phenomena. For the multiple injections, l/d = 15 combined the oxygen supply advantage and the low reaction zone velocity, so it was found to be the best under the three conditions under consideration.
論文目次 摘要 I
目錄 XI
表目錄 XIII
圖目錄 XIV
符號說明 XVIII
第一章 導論 1
§1-1 前言 1
§1-2 文獻回顧 3
§1-3 研究動機與目的 22
第二章 數學與物理模型 24
§2-1 基本假設 25
§2-2 連續相流場統御方程式 25
§2-3 紊流模型 29
§2-4 邊牆函數 31
§2-5 離散相流場之統御方程式 33
§2-6 燃燒化學模型 48


第三章 數值方法 52
§3-1 控制體積轉換之傳輸方程式 53
§3-2 壓力耦合演算法 54
§3-3 離散相計算流程 56
§3-4 二階迎風法 57
§3-5 鬆弛因子 58
§3-6 收斂標準 59
第四章 結果與討論 60
§4-1 超音速燃燒室模型與邊界條件 61
§4-2 網格獨立測試 63
§4-3 單孔噴注之超音速冷流場 64
§4-4 多孔噴注器之超音速冷流場 78
§4-5 單孔與多孔噴注超音速燃燒反應流場 103
第五章 結論與未來工作 129
§5-1 結論 129
§5-2 未來工作 131
參考文獻 133
參考文獻 【1】 http://en.wikipedia.org/wiki/Scramjet
【2】 http://en.wikipedia.org/wiki/Ramjet
【3】 Tetlow M. R., and Doolan C. J., “Comparison of Hydrogen and Hydrocarbon-Fueled Scramjet Engine for Orbital Insertion”, Journal of Spacecraft and Rockets, Vol.44, No.2, pp. 365-373, 2007.
【4】 Amati V., Bruno C., Simone, D., and Sciubba, E., “Exergy Analysis of Hypersonic Propulsion System: Performance Comparison of Two Different Scramjet Configurations at Cruise Conditions”, Energy, Vol.33, pp.116-129, 2008.
【5】 Lewis M. J., “Significance of Fuel Selection for Hypersonic Vehicle Range”, Journal of Propulsion and Power, Vol. 17, No. 6, pp. 1214-1221, 2001.
【6】 Manna P., Behera R., Chakraborty D., “Liquid-Fueled Strut-Based Scramjet Combustor Design: a Computational Fluid Dynamics Approach”, Journal of Propulsion and Power, Vol.24, No.2, pp. 274-281, 2008.
【7】 Gokulakrishnan P., Pal S., Klassen M., Hamer A., Roby R., Kozaka O., and Menon S., “Supersonic Combustion Simulation of Cavity-Stabilized Hydrocarbon Flames Using Ethylene Reduced Kinetic Mechanism”, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA-2006-5092, 2006.
【8】 Pandey K. M., Member IACSIT and Sivasakthivel T., “Recent Advances in Scramjet Fuel Injection – A Review”, International Journal of Chemical Engineering and Applications, Vol. 1, No.4, ISSN 2010-0221, 2010.
【9】 Ben-Yakar A., Hanson R. K., “Experimental Investigation of Flame-Holding Capability of a Transverse Hydrogen Jet in Supersonic Cross-Flow”, Proceedings of the Twenty-Seventh International Symposium on Combustion, Combustion Inst. , Pittsburgh PA, pp. 2173-2180, 1998.
【10】Takahashi S., and Wakai K., “Effect of Combustion on Flow Field in a Model Scramjet Combustor”, Symposium on Combustion, Vol. 27, pp. 2143-2150, 1998.
【11】Beloki P. J., Asma C. O., Theunissen R., Chazot O., “Experimental Investigation of Liquid Jet Injection into Mach 6 Hypersonic Crossflow”, Exp. Fluids, Vol.46, pp. 403–417, 2009.
【12】Shen Y. Z., “Penetration and Mixing of Lateral Injected Doublet Liquid Jets in Supersonic Airflow”, 成功大學航空太空工程學系碩士論文, 2015.
【13】Yu G., Li J.G., Yang S. R., Yue L. J., and Zhang X. Y., “Investigation of Liquid Hydrocarbon Combustion in Supersonic Flow Using Effervescent Atomization”, 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA-2002-4279, 2002.
【14】Mathur T., Lin K. C., Kennedy P., Gruber M., Donbar J., Jackson T., and Billig F., “Liquid JP-7 Combustion in a Scramjet Combustor”, 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA-2000-3581, 2000.
【15】Arai T., and Schetz J. A., “Injection of Bubbling Liquid Jet from Multiple Injectors into a Supersonic Stream”, Journal of Propulsion and Power, Vol.10, No.3, pp. 382-386, 1994.
【16】Lin K. C., Kirkendall K. A., Kennedy P. J., and Jackson T. A., “Spray Structures of Aerated Liquid Fuel Jets in Supersonic Crossflows”, 35th Joint Propulsion Conference and Exhibit, AIAA-99-2374, 1999.
【17】Dufour E., and Bouchez M., “Computational Analysis of a Kerosene-Fueled Scramjet”, 10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference, AIAA-2001-2817, 2001.
【18】Rasmussen C. C., Driscoll J. F., Hsu K.Y., Donbar J. M., Gruber M. R., and Carter C. D., “Stability Limits of Cavity-Stabilized Flames in Supersonic Flow”, Proceedings of the Combustion Institute, Vol.30, pp. 2825-2833, 2005.
【19】Wepler U., and Koschel W. W., “Numerical Investigation of Turbulent Reacting Flows in a Scramjet Combustor Model”, 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA-2002-3572, 2002.
【20】Menter F. R., “Two Equation Eddy Viscosity Turbulence Models for Engineering Applications”, AIAA Journal, Vol. 32, No. 8, pp. 1598-1605, 1994.
【21】Oevermann M., “Numerical Investigation of Turbulent Hydrogen Combustion in a Scramjet Using Flamelet Modeling”, Aerospace Science and Technology, Vol. 4, pp.463-480, 2000.
【22】Liu. O. Z., Cai. Y. H., Hu. Y. L., Liu. J. H., and Ling. W.H., “The Turbulence Models for Numerical Analysis of Liquid Kerosene Supersonic Combustion”, ACTA Aerodynamica Sinica, Vol.25, pp. 362-367, 2007.
【23】宋緯倫, “不同紊流模式對超音速流場數值模擬結果之影響”, 成功大學航空太空工程學系碩士論文, 2010.
【24】Debasis C., “Numerical Simulation of Liquid Fueled Scramjet Combustor Flow Fields”, International Journal of Hypersonic, Vol. 1, Number 1, pp. 2040-2317, 2010.
【25】Chenault C. F., and Beran P. S., “K-ε and Reynolds Stress Turbulence Model Comparisons for Two-Dimensional Injection Flows”, AIAA Journal, Vol. 36, No. 8, pp. 1401-1412, 1998.
【26】Yue L. J., and Yu G., “Numerical Simulation of Kerosene Spray in Supersonic Crossflow”, Journal of Propulsion Technology, Vol.25, No.1, pp. 11-14, 2004.
【27】Lin K. C., “Structures of Water Jets in a Mach 1.94 Supersonic Crossflow”, 42nd AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2004-0971, 2004.
【28】Wang J. F., Liu C., and Wu Y. Z., “Numerical Simulation of Spray Atomization in Supersonic Flows”, Modern Physics Letter B, Vol. 24, No.13, pp. 1299-1302, 2010.
【29】Yang D. C., Zhu W. B., Chen H., Guo J. X., and Liu J. W., “Model the Secondary Breakup of a Liquid Jet in Supersonic Crossflows”, Journal of Harbin Engineering University, Vol.35, No.1, pp.62-68, 2014.
【30】Chakraborty D., “Numerical Simulation of Liquid Fueled Scramjet Combustor Flow Fields”, International Journal of Hypersonic, Vol. 1, pp. 13-29, 2010.
【31】Yu G., Li. J. G., Chang. X. Y., Chen. L. H., and Sung. C. J., “Fuel Injection and Flame Stabilization in a Liquid-Kerosene-Fueled Supersonic Combustor”, Journal of Propulsion and Power, Vol. 19, No. 5, pp. 885-893, 2003.
【32】Ali M., Fuhiwara T., Leblanc J. E., “Influence of Main Flow Inlet Configuration on Mixing and Flame Holding in Transverse Injection into Supersonic Air Stream”, International Journal of Engineering Science, Vol. 38, pp. 1161-1180, 2000.
【33】Ali M., Sadrul Islam A. K. M., and Ahmed S., “Mixing and Flame Holding with Air Inlet Configuration in Scramjet Combustor”, International Journal of Heat and Mass Transfer, Vol. 31, No.8, pp. 1187-1198, 2004.
【34】Ali M., and Sadrul Islam A. K. M., “Study on Main Flow and Fuel Injector Configurations for Scramjet Applications”, International Journal of Heat and Mass Transfer Vol. 49, pp. 3634-3644, 2006.
【35】Balasubramanyam M. S., and Chen C. P., “Evaporating Spray in Supersonic Streams Including Turbulence Effects”, 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA- 2006-1338, 2006.
【36】Kamali R., and Binesh A. R., “The Importance of Sensitive Parameter Effect on the Combustion in a High Velocity Oxygen-Fuel Spray System”, International Communications in Heat and Mass Transfer, Vol. 36, pp. 979-983, 2009.
【37】Yue L. J., and Yu G., “Studies on Spray Characteristics of Barbotaged Atomizer”, Journal of Propulsion Technology, Vol. 24, No. 4, 2003.
【38】Wu. Z. Y., “Numerical Analyses of Supersonic Combustion Flows with Combustor Cavity Using Hydrocarbon Fuels”, 成功大學航空太空工程學系碩士論文, 2013.
【39】Zheng. R. Q., “Numerical Analyses of Supersonic Combustion Flows Using Liquid Hydrocarbon Fuels” 成功大學航空太空工程學系碩士論文, 2013.
【40】Wang X., Zhong F., Gu H., and Zhang. X., “Numerical Study of Combustion and Convective Heat Transfer of a Mach 2.5 Supersonic Combustor”, Article in Applied Thermal Engineering, Vol. 89, pp. 883-896, 2015.
【41】Wang L., Qian Z., Gao L., “Numerical Study of the Combustion Field in Dual-cavity Scramjet Combustor”, Procedia Engineering, Vol. 99, pp. 313-319, 2014.
【42】Kumaran K., and Babu V., “Investigation of the Effect of Chemistry Model on the Numerical Predictions of the Supersonic Combustion of Hydrogen”, Combustion and Flame, Vol. 156, pp. 826-841, 2009.
【43】Mitani T., and Kouchi T., “Flame Structure and Combustion Efficiency Computed for A Mach 6 Scramjet Engine”, Combustion and Flame, Vol.42, pp.187-196, 2005.
【44】Rajasekaran A., and Babu V., “Numerical Simulation of Three-Dimension Reacting Flow in a Model Supersonic Combustor”, Journal of Propulsion and Power, Vol.4, No.4, pp. 820-827, 2006.
【45】Ranz W. E., and Marshall W. R. Jr., “Evaporation from Drops Part II, Chemical Engineering Progress Magazine, Vol. 48, pp. 173-180, 1952.
【46】ANSYS FLUENT, 2013,“Ansys Fluent 15.0 theory guide”, ANSYS Inc.
【47】Liu H., Guo Y., Lin W., “Numerical Investigation of Liquid Jet Injection into a Supersonic Crossflow”, 29th Congress of the International Council of the Aeronautical Sciences, 2014.
【48】Iannetti A. C. and Moder J. P., “Comparing Spray Characteristics from Reynolds Averaged Navier-Stokes (RANS) National Combustion Code (NCC)Calculations Against Experimental Data for a Turbulent Reacting Flow”, 48th Aerospace Sciences Meeting Sponsored by the American Institute of Aeronautics and Astronautics, NASA/TM-2010-216735, 2010.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw