進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-3007201814134700
論文名稱(中文) 製備RGO/SnOx複合材料並應用於鋰離子電池負極材料之研究
論文名稱(英文) Synthesis of RGO/SnOx composite by chemical reduction as anode material for lithium ion batteries
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 吳亦筑
研究生(英文) Yi-Zhu Wu
學號 N56054041
學位類別 碩士
語文別 中文
論文頁數 125頁
口試委員 指導教授-黃肇瑞
共同指導教授-張家欽
口試委員-林士剛
口試委員-許文東
口試委員-吳季珍
中文關鍵字 化學氧化還原反應    錫氧化物  還原氧化石墨烯  複合材料  負極材料  鋰離子電池 
英文關鍵字 Reduced graphene oxide  tin  tin oxide  chemical reduction  composite  anode material  lithium-ion batteries 
學科別分類
中文摘要   本研究專注於石墨碳材與錫複合材料的探討,錫與錫氧化物,其取得性高,同時具有高能量密度,但卻因導電性差、體積膨脹效應導致循環性不佳,而利用石墨烯的優點,如機械強度高,導電性佳,表面積大等特性來提升電化學表現,其層狀結構作為複合材料的骨架更能緩解錫零維材料的體積膨脹效應。
  碳材與錫複合材料合成方法很多種,通常需高溫、高壓、特殊儀器與藥品,製程較為繁瑣或需要長時間反應與進一步退火處理,產生許多廢熱與能源的支出,也導致大量製造且商業化的困難。本研究成功開發簡易且低成本的製程,藉由控制前驅物重量比以及NaBH4還原劑濃度不同實驗的設計來得到最佳化之製程,第一部分實驗發現不同的前驅物重量比影響了複合材料中錫元素的型態,第二部分實驗則以還原劑作為變因,隨著還原劑濃度的增加,可以得到還原程度更高的複合材料,且經由此製程形成之錫奈米顆粒都維持在5奈米左右,有利於與更多的鋰離子反應而提高了電容量,且因複合材料之協同效應維持了穩定的循環壽命。
  本研究更進一步探討了還原劑NaBH4在製程中所扮演的角色,BH4-陰離子在製程中有反應選擇性,錫前驅物比較多的時候可以先在溶液中還原出金屬錫再吸附上石墨烯形成複合材料;而隨著還原劑濃度的提高,BH4-陰離子能帶入更多的錫元素到複合材料當中,最後在適當的還原劑濃度條件下,可以形成RGO/SnOx的複合材料,其電化學特性兼容了石墨烯的穩定性、金屬錫的高電容,而氧化錫亦可貢獻較穩定的SEI膜,其與鋰離子產生之不可逆Li2O可透過Sn轉換為可逆電容,因此本研究之RGO/SnOx複合材料同時具有高電容量、低不可逆電容以及穩定的循環壽命表現。
英文摘要 We successfully synthesize the reduced graphene oxide/SnOx (RGO/SnOx) composites via a simple chemical reduction method with low cost and low toxicity. In this procedure, we use the Sn(BF4)2 as the precursor and NaBH4 as the reducing agent to deposit the tin onto reduced graphene oxide and utilize the composite at room temperature. This study shows that reductant concentration significantly affect reduction degree as well as density and agglomeration of nanoparticles over the RGO sheets. The average size of the nanoparticles in the composites is approximately 5 nm. The observed electrochemical performance of RGO/SnOx composite shows improved capacity (937.9 mAh/g for first cycle discharge) and good cycling ability (824.0mAh/g with 88% retention after 50 cycles.).
論文目次 中文摘要 I
Extend abstract II
致謝 X
總目錄 XII
圖目錄 XV
表目錄 XX
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
第二章 文獻回顧 3
2.1 鋰離子電池的發展與應用 3
2.2 鋰離子電池組成與工作原理 5
2.3 鋰離子電池負極材料介紹 8
2.3.1 石墨負極材料 8
2.3.2 錫/錫氧化物負極材料 8
2.3.3 矽與其他負極材料 11
2.4 負極材料的問題 12
2.4.1 活性材料的崩解 12
2.4.2 固態電解質界面的形成 13
2.4.3 不可逆電容的發生 15
2.5 負極材料改質 16
2.6 錫/錫氧化物與石墨烯複合材料應用於鋰離子電池負極材料之研究近況 18
2.6.1 錫/錫氧化物與石墨烯複合材料 18
2.6.2 製備方法與其性能 19
2.6.3 化學還原方法製備錫/錫氧化物與石墨烯複合材料 29
2.7 零維錫奈米顆粒與二維石墨烯層狀結構之協同作用 36
第三章 實驗方法與步驟 39
3.1. 實驗材料 39
3.2. 實驗設備 39
3.3. 實驗設計 40
3.4. 活性材料的製備 41
3.4.1. 氧化石墨烯(Graphene oxide)的製備 41
3.4.2. RGO/SnOx複合材料之製備 42
3.5. 材料鑑定分析 45
3.5.1. X-ray繞射分析儀 (X-ray diffraction spectrometer: XRD) 45
3.5.2. 電子能譜化學分析儀 (Electron Spectroscopy for Chemical Analysis: ESCA) ………………………………………………………………………..46
3.5.3. 拉曼光譜分析儀 (Raman spectroscopy: Raman) 47
3.5.4. 高解析場發射掃描式電子顯微鏡 (High resolution field emission scanning electron microscopy: FE-SEM) 49
3.5.5. 高解析分析電子顯微鏡 (Ultrahigh Resolution Analytical Electron Spectroscopy: HR-AEM) 50
3.6. 鈕扣型半電池性質測試 51
3.6.1. 極片製作 51
3.6.2. 電池組裝 51
3.6.3. 半電池充放電測試 53
3.6.4. 交流阻抗測試 54
3.6.5. 循環伏安法測試 58
第四章 結果與討論 59
4.1 RGO/SnO2與RGO/Sn奈米複合材料 59
4.1.1 活性材料的製備分析 59
4.1.1.1 XRD分析定性 59
4.1.1.2 碳原子結構變化的Raman分析 62
4.1.1.3 鍵結能貢獻與變化的ESCA分析 64
4.1.1.4 表面形貌與顯微結構的SEM與EDS分析 68
4.1.1.5 表面形貌與顯微結構的TEM分析 70
4.1.2 半電池的組裝與測試 74
4.1.2.1 第一次充放電測試 74
4.1.2.2 循環壽命充放電測試 78
4.1.2.3 不同充放電速率測試(C-rate test) 81
4.2 RGO/SnOx奈米複合材料 84
4.2.1 活性材料的製備分析 84
4.2.1.1 XRD分析定性 84
4.2.1.2 碳原子結構變化的Raman分析 86
4.2.1.3 鍵結能貢獻與變化的ESCA分析 88
4.2.1.4 表面形貌與顯微結構的SEM與EDS分析 92
4.2.1.5 表面形貌與顯微結構的TEM分析與SADP分析 94
4.2.2 半電池的組裝與測試 99
4.2.2.1 第一次充放電測試 99
4.2.2.2 循環壽命充放電測試 103
4.2.2.3 交流阻抗分析測試 107
4.2.2.4 不同充放電速率測試 109
4.2.2.5 循環伏安法分析 111
第五章 結論 113
附錄:TGA碳錫重量比分析 115
附錄:與其他文獻Sn/SnOx/graphene複合材料之比較 118
參考文獻 120
參考文獻 [1] R. Hu, Y. Ouyang, T. Liang, H. Wang, J. Liu, J. Chen, et al., "Stabilizing the Nanostructure of SnO2 Anodes by Transition Metals: A Route to Achieve High Initial Coulombic Efficiency and Stable Capacities for Lithium Storage," Adv Mater, vol. 29, Apr 2017.
[2] C. Kim, G. Hwang, J.-W. Jung, S.-H. Cho, J. Y. Cheong, S. Shin, et al., "Fast, Scalable Synthesis of Micronized Ge3N4@C with a High Tap Density for Excellent Lithium Storage," Advanced Functional Materials, vol. 27, p. 1605975, 2017.
[3] S.-C. Hou, Y.-F. Su, C.-C. Chang, C.-W. Hu, T.-Y. Chen, S.-M. Yang, et al., "The synergistic effects of combining the high energy mechanical milling and wet milling on Si negative electrode materials for lithium ion battery," Journal of Power Sources, vol. 349, pp. 111-120, 2017.
[4] M. D. Bhatt and C. O'Dwyer, "Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes," Phys Chem Chem Phys, vol. 17, pp. 4799-844, Feb 21 2015.
[5] L. Zhou, K. Zhang, Z. Hu, Z. Tao, L. Mai, Y.-M. Kang, et al., "Recent Developments on and Prospects for Electrode Materials with Hierarchical Structures for Lithium-Ion Batteries," Advanced Energy Materials, vol. 8, p. 1701415, 2018.
[6] S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, and C. Capiglia, "Review on recent progress of nanostructured anode materials for Li-ion batteries," Journal of Power Sources, vol. 257, pp. 421-443, 2014.
[7] I. Hasa, J. Hassoun, and S. Passerini, "Nanostructured Na-ion and Li-ion anodes for battery application: A comparative overview," Nano Research, vol. 10, pp. 3942-3969, 2017.
[8] M. R. Palacin, "Recent advances in rechargeable battery materials: a chemist's perspective," Chem Soc Rev, vol. 38, pp. 2565-75, Sep 2009.
[9] A. R. Kamali and D. J. Fray, "Tin-Based Materials as Advanced Anode Materials for Lithium Ion Batteries : a review," Rev.Adv.Mater.Sci., vol. 27, pp. 14-24.
[10] N. Spinner, L. Zhang, and W. E. Mustain, "Investigation of metal oxide anode degradation in lithium-ion batteries via identical-location TEM," J. Mater. Chem. A, vol. 2, pp. 1627-1630, 2014.
[11] 樊小勇, "Electroplated Tin-Based Alloy Anodes and Their Properties for Lithium-ion Battery," Doctor, Department of Chemistry, Xiamen University.
[12] M. Winter and J. r. O. Besenhard, "Electrochemical lithiation of tin and tin-based intermetallics," Electrochimica Acta, vol. 45, pp. 31-50, 1999.
[13] R. Hu, H. Liu, M. Zeng, J. Liu, and M. Zhu, "Progress on Sn-based thin-film anode materials for lithium-ion batteries," Chinese Science Bulletin, vol. 57, pp. 4119-4130, 2012.
[14] A. Mauger, H. Xie, and C. M. Julien, "Composite anodes for lithium-ion batteries: status and trends," AIMS Materials Science, vol. 3, pp. 1054-1106, 2016.
[15] N. Nitta, F. Wu, J. T. Lee, and G. Yushin, "Li-ion battery materials: present and future," Materials Today, vol. 18, pp. 252-264, 2015.
[16] K. Cao, T. Jin, L. Yang, and L. Jiao, "Recent progress in conversion reaction metal oxide anodes for Li-ion batteries," Materials Chemistry Frontiers, vol. 1, pp. 2213-2242, 2017.
[17] A. Y. Kim, J. S. Kim, C. Hudaya, D. Xiao, D. Byun, L. Gu, et al., "An elastic carbon layer on echeveria-inspired SnO2 anode for long-cycle and high-rate lithium ion batteries," Carbon, vol. 94, pp. 539-547, 2015.
[18] J. Wang, T. Xu, X. Huang, H. Li, and T. Ma, "Recent progress of silicon composites as anode materials for secondary batteries," RSC Advances, vol. 6, pp. 87778-87790, 2016.
[19] J. Zhang, P. Gu, J. Xu, H. Xue, and H. Pang, "High performance of electrochemical lithium storage batteries: ZnO-based nanomaterials for lithium-ion and lithium-sulfur batteries," Nanoscale, vol. 8, pp. 18578-18595, Nov 10 2016.
[20] G. Ramos-Sanchez, F. A. Soto, J. M. Martinez de la Hoz, Z. Liu, P. P. Mukherjee, F. El-Mellouhi, et al., "Computational Studies of Interfacial Reactions at Anode Materials: Initial Stages of the Solid-Electrolyte-Interphase Layer Formation," Journal of Electrochemical Energy Conversion and Storage, vol. 13, p. 031002, 2016.
[21] P. Verma, P. Maire, and P. Novák, "A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries," Electrochimica Acta, vol. 55, pp. 6332-6341, 2010.
[22] A. Wang, S. Kadam, H. Li, S. Shi, and Y. Qi, "Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries," npj Computational Materials, vol. 4, 2018.
[23] H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. McDowell, et al., "Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control," Nat Nanotechnol, vol. 7, pp. 310-5, Mar 25 2012.
[24] C. Yuqin, L. Hong, W. Lie, and L. Tianhong, "Irreversible capacity loss of graphite electrode in lithium-ion batteries," Journal of Power Sources, vol. 68, pp. 187-190, 1997.
[25] P. Lian, X. Zhu, S. Liang, Z. Li, W. Yang, and H. Wang, "Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries," Electrochimica Acta, vol. 55, pp. 3909-3914, 2010.
[26] N. Kheirabadi and A. Shafiekhani, "Graphene Li-Ion battery," Journal of Applied Physics, vol. 112, p. 124323, 2012.
[27] Z. Lei, J. Zhang, L. L. Zhang, N. A. Kumar, and X. S. Zhao, "Functionalization of chemically derived graphene for improving its electrocapacitive energy storage properties," Energy & Environmental Science, vol. 9, pp. 1891-1930, 2016.
[28] R. Hu, H. Zhang, Z. Lu, J. Liu, M. Zeng, L. Yang, et al., "Unveiling critical size of coarsened Sn nanograins for achieving high round-trip efficiency of reversible conversion reaction in lithiated SnO 2 nanocrystals," Nano Energy, vol. 45, pp. 255-265, 2018.
[29] 赵书平, 王婵, 杨正龙, and 姜玮, "锂离子电池负极材料二氧化锡的研究进展," 材料导报A: 综述篇, vol. 30, pp. 136-142, 2016.
[30] J. Wolfenstine, J. L. Allen, J. Read, and D. Foster, "Chemistry and Structure of Sony’s Nexelion Li-ion Electrode Materials," 2006.
[31] B. Wang, B. Luo, X. Li, and L. Zhi, "The dimensionality of Sn anodes in Li-ion batteries," Materials Today, vol. 15, pp. 544-552, 2012.
[32] L. Liu, M. An, P. Yang, and J. Zhang, "Superior cycle performance and high reversible capacity of SnO2/graphene composite as an anode material for lithium-ion batteries," Sci Rep, vol. 5, p. 9055, Mar 12 2015.
[33] J. Wang, S. Xie, D. Cao, X. Lu, L. Meng, G. Yang, et al., "Facile synthesis of ultrafine SnO2 nanoparticles on graphene nanosheets via thermal decomposition of tin-octoate as anode for lithium ion batteries," Journal of Nanoparticle Research, vol. 18, 2016.
[34] T. Gao, K. Huang, X. Qi, H. Li, L. Yang, and J. Zhong, "Free-standing SnO2 nanoparticles@graphene hybrid paper for advanced lithium-ion batteries," Ceramics International, vol. 40, pp. 6891-6897, 2014.
[35] H. Wang, P. Gao, S. Lu, H. Liu, G. Yang, J. Pinto, et al., "The effect of tin content to the morphology of Sn/carbon nanofiber and the electrochemical performance as anode material for lithium batteries," Electrochimica Acta, vol. 58, pp. 44-51, 2011.
[36] X. Zhou, Z. Dai, S. Liu, J. Bao, and Y. G. Guo, "Ultra-uniform SnOx/carbon nanohybrids toward advanced lithium-ion battery anodes," Adv Mater, vol. 26, pp. 3943-9, Jun 18 2014.
[37] M. K. Dufficy, S.-Y. Huang, S. A. Khan, and P. S. Fedkiw, "Effects of composition and structure on the performance of tin/graphene-containing carbon nanofibers for Li-ion anodes," RSC Advances, vol. 7, pp. 15428-15438, 2017.
[38] Z. Li, W. Lv, C. Zhang, J. Qin, W. Wei, J. J. Shao, et al., "Nanospace-confined formation of flattened Sn sheets in pre-seeded graphenes for lithium ion batteries," Nanoscale, vol. 6, pp. 9554-8, Aug 21 2014.
[39] J. Liang, C. Yuan, H. Li, K. Fan, Z. Wei, H. Sun, et al., "Growth of SnO2 Nanoflowers on N-doped Carbon Nanofibers as Anode for Li- and Na-ion Batteries," Nano-Micro Letters, vol. 10, 2017.
[40] L. Wen, X. Qin, W. Meng, N. Cao, and Z. Song, "Boron oxide–tin oxide/graphene composite as anode materials for lithium ion batteries," Materials Science and Engineering: B, vol. 213, pp. 63-68, 2016.
[41] L. G. Guex, B. Sacchi, K. F. Peuvot, R. L. Andersson, A. M. Pourrahimi, V. Strom, et al., "Experimental review: chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry," Nanoscale, vol. 9, pp. 9562-9571, Jul 13 2017.
[42] M. M. Storm, R. E. Johnsen, and P. Norby, "In situ X-ray powder diffraction studies of the synthesis of graphene oxide and formation of reduced graphene oxide," Journal of Solid State Chemistry, vol. 240, pp. 49-54, 2016.
[43] C.-C. Hou, S. Brahma, S.-C. Weng, C.-C. Chang, and J.-L. Huang, "Facile, low temperature synthesis of SnO 2 /reduced graphene oxide nanocomposite as anode material for lithium-ion batteries," Applied Surface Science, vol. 413, pp. 160-168, 2017.
[44] C. Nithya and S. Gopukumar, "Reduced graphite oxide/nano Sn: a superior composite anode material for rechargeable lithium-ion batteries," ChemSusChem, vol. 6, pp. 898-904, May 2013.
[45] F. Wan, H.-Y. Lü, X.-L. Wu, X. Yan, J.-Z. Guo, J.-P. Zhang, et al., "Do the bridging oxygen bonds between active Sn nanodots and graphene improve the Li-storage properties?," Energy Storage Materials, vol. 5, pp. 214-222, 2016.
[46] Ş. Sarioğlan, "Recovery of Palladium from Spent Activated Carbon-Supported Palladium Catalysts," Platinum Metals Review, vol. 57, pp. 289-296, 2013.
[47] X. Ma, K. Ye, G. Wang, M. Duan, K. Cheng, G. Wang, et al., "Facile fabrication of gold coated nickel nanoarrays and its excellent catalytic performance towards sodium borohydride electro-oxidation," Applied Surface Science, vol. 414, pp. 353-360, 2017.
[48] R. Hu, D. Chen, G. Waller, Y. Ouyang, Y. Chen, B. Zhao, et al., "Dramatically enhanced reversibility of Li2O in SnO2-based electrodes: the effect of nanostructure on high initial reversible capacity," Energy & Environmental Science, vol. 9, pp. 595-603, 2016.
[49] I.-T. Kim, "Capacity Improvement of Tin-Deposited on Carbon-Coated Graphite Anode for Rechargeable Lithium Ion Batteries," International Journal of Electrochemical Science, pp. 5807-5818, 2016.
[50] Y. Li, "Morphology Control and Cycling Stability of Sn Nanostructures and Sn/RGO Composites as Lithium-Ion Battery Anodes," International Journal of Electrochemical Science, pp. 2366-2378, 2018.
[51] A. M. Dimiev and J. M. Tour, "Mechanism of graphene oxide formation," ACS Nano, vol. 8, pp. 3060-8, Mar 25 2014.
[52] E. Barsoukov, "Comparison of kinetic properties of LiCoO2 and LiTi0.05Mg0.05Ni0.7Co0.2O2 by impedance spectroscopy," Solid State Ionics, vol. 161, pp. 19-29, 2003.
[53] Q.-C. Zhuang, T. Wei, L.-L. Du, Y.-L. Cui, L. Fang, and S.-G. Sun, "An Electrochemical Impedance Spectroscopic Study of the Electronic and Ionic Transport Properties of Spinel LiMn2O4," 114, pp. 8614-8621, 2010.
[54] E. Barsoukov and J. R. Macdonald. (2005). Impedance Spectroscopy, Theory Experiment and Applications.
[55] Z. Quanchao, X. shoudong, Q. Xiangyun, C. Yongli, F. Liang, and S. Shigang, "Diagnosis of Electrochemical Impedance Spectroscopy in Lithium Ion Batteries," PROGRESS IN CHEMISTRY, vol. 22, pp. 1044-1057, 2010.
[56] 侯朝鐘, "二氧化錫嵌入於氧化石墨烯之奈米複合材料製作並應用於鋰離子電池負極之研究," 材料科學與工程學系, 國立成功大學, 2016.
[57] C. Wu, X. Tong, Y. Ai, D.-S. Liu, P. Yu, J. Wu, et al., "A Review: Enhanced Anodes of Li/Na-Ion Batteries Based on Yolk–Shell Structured Nanomaterials," Nano-Micro Letters, vol. 10, 2018.
[58] Y. He, A. Li, C. Dong, C. Li, and L. Xu, "Mesoporous Tin-Based Oxide Nanospheres/Reduced Graphene Composites as Advanced Anodes for Lithium-Ion Half/Full Cells and Sodium-Ion Batteries," Chemistry, vol. 23, pp. 13724-13733, Oct 4 2017.
[59] M. Shahid, N. Yesibolati, M. C. Reuter, F. M. Ross, and H. N. Alshareef, "Layer-by-layer assembled graphene-coated mesoporous SnO2 spheres as anodes for advanced Li-ion batteries," Journal of Power Sources, vol. 263, pp. 239-245, 2014.
[60] H. Li, Q. Su, J. Kang, M. Huang, M. Feng, H. Feng, et al., "Porous SnO 2 hollow microspheres as anodes for high-performance lithium ion battery," Materials Letters, vol. 217, pp. 276-280, 2018.
[61] Z. Wen, F. Zheng, and K. Liu, "Synthesis of porous SnO2 nanospheres and their application for lithium-ion battery," Materials Letters, vol. 68, pp. 469-471, 2012.
[62] A. M. Tripathi and S. Mitra, "Ecofriendly Approach to Making Graphene-Tin/Tin Oxide Nanocomposite Electrodes for Energy Storage," ChemElectroChem, vol. 1, pp. 1327-1337, 2014.
[63] "Methods of enhancement of reactivity and selectivity of sodium."
[64] H.-J. Shin, K. K. Kim, A. Benayad, S.-M. Yoon, H. K. Park, I.-S. Jung, et al., "Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance," Advanced Functional Materials, vol. 19, pp. 1987-1992, 2009.
[65] D. A. Ondigo, B. Mudabuka, B. Pule, Z. R. Tshentu, and N. Torto, "A colorimetric probe for the detection of Ni2+ in water based on Ag-Cu alloy nanoparticles hosted in electrospun nanofibres," Water SA, vol. 42, p. 408, 2016.
[66] Z. F. Li, Q. Liu, Y. Liu, F. Yang, L. Xin, Y. Zhou, et al., "Facile Preparation of Graphene/SnO(2) Xerogel Hybrids as the Anode Material in Li-Ion Batteries," ACS Appl Mater Interfaces, vol. 7, pp. 27087-95, Dec 16 2015.
[67] C. Botas, D. Carriazo, G. Singh, and T. Rojo, "Sn– and SnO2–graphene flexible foams suitable as binder-free anodes for lithium ion batteries," Journal of Materials Chemistry A, vol. 3, pp. 13402-13410, 2015.
[68] S. Kang, X. Chen, and J. Niu, "Sn Wears Super Skin: A New Design for Long Cycling Batteries," Nano Lett, vol. 18, pp. 467-474, Jan 10 2018.
[69] D. Wang, X. Li, J. Yang, J. Wang, D. Geng, R. Li, et al., "Hierarchical nanostructured core-shell Sn@C nanoparticles embedded in graphene nanosheets: spectroscopic view and their application in lithium ion batteries," Phys Chem Chem Phys, vol. 15, pp. 3535-42, Mar 14 2013.
[70] S.-C. Weng, S. Brahma, C.-C. Chang, and J.-L. Huang, "Synthesis of MnOx/reduced graphene oxide nanocomposite as an anode electrode for lithium-ion batteries," Ceramics International, vol. 43, pp. 4873-4879, 2017.
[71] Y. Yan, L. Ben, Y. Zhan, and X. Huang, "Nano-Sn embedded in expanded graphite as anode for lithium ion batteries with improved low temperature electrochemical performance," Electrochimica Acta, vol. 187, pp. 186-192, 2016.
[72] Z.-Q. Wang, M.-S. Wang, Z.-L. Yang, Y.-S. Bai, Y. Ma, G.-L. Wang, et al., "SnO2 /Sn Nanoparticles Embedded in an Ordered, Porous Carbon Framework for High-Performance Lithium-Ion Battery Anodes," ChemElectroChem, vol. 4, pp. 345-352, 2017.
[73] T. L. Lee, R. A. Adams, C. Luhrs, A. Arora, V. G. Pol, C.-H. Wu, et al., "High-stability tin/carbon battery electrodes produced using reduction expansion synthesis," Carbon, vol. 132, pp. 411-419, 2018.
[74] H. Woo, S. Wi, J. Kim, J. Kim, S. Lee, T. Hwang, et al., "Complementary surface modification by disordered carbon and reduced graphene oxide on SnO 2 hollow spheres as an anode for Li-ion battery," Carbon, vol. 129, pp. 342-348, 2018.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-07-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-07-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw