進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-3007201518352500
論文名稱(中文) 介白素二十第二型接受器在肝疾病的研究
論文名稱(英文) The Study of IL-20 receptor 2 in Liver Disease
校院名稱 成功大學
系所名稱(中) 生物化學暨分子生物學研究所
系所名稱(英) Department of Biochemistry and Molecular Biology
學年度 103
學期 2
出版年 104
研究生(中文) 何韋志
研究生(英文) Wei-Chih Ho
學號 S16024107
學位類別 碩士
語文別 英文
論文頁數 59頁
口試委員 指導教授-張明熙
口試委員-陳昌熙
口試委員-鄭宏祺
中文關鍵字 介白素-20第二型接受器  肝纖維化 
英文關鍵字 IL-20R2  Liver fibrosis 
學科別分類
中文摘要 肝臟疾病如脂肪性肝炎和肝纖維化是全世界造成罹病以及死亡的重要疾病之一。肝纖維化是指因為不斷有新的纖維蛋白形成,使得過多的細胞外基質沈積在肝臟中,最後可能造成肝硬化的產生。IL-20第二型接受器 (IL-20R2)除了可以和IL-20第一型接受器 (IL-20R1)形成二聚體,接受IL-19/20/24之外,另外也可以和IL-22第一型接受器 (IL-22R1)形成二聚體,接受IL-20/24。由於先前的研究顯示,IL-20在肝纖維化中是扮演一個促發炎的角色,而且IL-20R1基因剔除小鼠具有抵抗CCl4所誘導肝損傷的能力,因此,在本次研究將更進一步探討IL-20R2基因剔除小鼠在肝疾病中所扮演的角色。從結果發現,利用TAA誘導短期小鼠肝損傷模式後,IL-20R2基因剔除小鼠會產生比野生型小鼠更嚴重的肝損傷,例如:更高的血清麩草醋酸轉胺脢 (AST),麩丙酮酸轉胺脢 (ALT)和膽紅素 (Bilirubin)數值,更大的肝臟壞死區域,較低的存活率以及增加促發炎激素的表現。IL-20R2基因剔除小鼠在由TAA或CCl4所誘導的長期小鼠肝損傷模式中也可以觀察到類似的現象。此外,在高脂食物所誘導的小鼠代謝性肝損傷模式中,IL-20R2基因剔除小鼠相較於野生型小鼠,同樣也會展現更高的血清麩草醋酸轉胺脢 (AST)和麩丙酮酸轉胺脢 (ALT)數值,另外還會出現更嚴重的脂肪性肝炎。因為出乎意料地發現IL-20R1與IL-20R2基因剔除小鼠之間所產生截然不同的效果,所以我們就想更進一步探討是否IL-24可能在肝臟疾病中扮演角色。在TAA誘導短期小鼠肝損傷模式中,利用肌肉內電擊的方式將pcDNA3.1-mIL-24質體送入老鼠體內,使其表現IL-24蛋白後,發現相較於空載體控制組 (Empty Vector),可以顯著降低血清麩草醋酸轉胺脢 (AST)和麩丙酮酸轉胺脢 (ALT)數值,減少肝臟壞死的區域,增加老鼠的存活率以及降低促發炎激素的表現。利用直接給予老鼠腹腔注射IL-24蛋白的方式,在TAA所誘導的短期小鼠肝損傷模式中也可以觀察到相同的現象。綜合上述的實驗結果,我們認為IL-20R1與IL-20R2基因剔除小鼠之間會產生截然不同的效果是由於缺乏IL-24所誘發的訊息傳遞所造成,而IL-24在肝臟疾病中可能是扮演一個保護性的角色。
英文摘要 Liver diseases such as hepatic steatosis and liver fibrosis, are important causes of morbidity and mortality worldwide. Liver fibrosis is defined as the presence of excess extracellular matrix deposition due to new fibrin formation, which may finally result in cirrhosis of the liver. IL-20 receptor (R)2 can dimerize with IL-20R1 to form the receptors for IL-19, IL-20 and IL-24, whereas IL-20R2 also can dimerize with IL-22R1 to form the receptors for IL-20 and IL-24. Our previous study indicated that IL-20 acts as a proinflammatory cytokine in liver fibrosis. IL-20R1-deficient mice were protected from CCl4-induced liver injury. Therefore, we were aimed to investigate the role of IL-20R2-deficient mice in liver disease. However, we found that IL-20R2 deficiency induced more severe effects in liver compared to wild-type mice under short-term thioacetamide (TAA)-induced liver injury. We demonstrated higher serum AST, ALT, and bilirubin levels, increasing necrosis area of liver, reducing survival rate, and up-regulating pro-inflammatory cytokine expression in IL-20R2-deficient mice. The similar phenomenon was found in long-term TAA- and CCl4- treated IL-20R2-deficient mice. In high-fat diet-induced metabolic liver injury, IL-20R2-deficient mice also showed higher serum ALT and AST, and had more severe hepatic steatosis compared with wild-type mice. Because of the unexpected opposite effects between IL-20R1- and IL-20R2-deficient mice, we further investigated whether IL-24 may play a role in liver disease. In short-term TAA-induced liver injury model, intramuscular electroporation of pcDNA3.1-IL-24 plasmid DNA significantly reduced serum AST/ALT, decreased necrosis area of liver, increased survival rate, and down-regulated pro-inflammatory cytokine expression compared to intramuscular electroporation of pcDNA3.1 empty vector. The similar phenomenon was found in recombinant mIL-24 protein treated mice in short-term TAA-induced liver injury model. Taken together, our data supposed that the opposite effects between IL-20R1- and IL-20R2-deficient mice might attribute to the deficiency of IL-24-induced signaling pathway. Therefore, IL-24 may play a protective role in liver disease.
論文目次 Chinese Abstract…………………………………………………………………I
English Abstract…………………………………………………………………III
Acknowledgement…………………….…………………………………………V
Contents.………………………………………….……………………………..VII
Contents of table………………………………………………………………..IX
Contents of figure……………………………………….……………………….X
Abbreviations……………………………………………………………………XII

Introduction ……………………………………………………………….......1
I. IL-20 …………………..…………….………………………………...……..1
II. Liver disease………………………………………………………...………2
1. Liver fibrosis…………………………………………………..……………..2
2. Damaged hepatocyte in liver fibrosis……………………….……………3
3. Activated HSC in liver fibrosis…………………………………………….4
4. Animal model of liver fibrosis………………………………….…………..4
III. IL-20 and liver disease.…………….....……………………………………5
IV. Interleukin24…………………………………………………………………6

Specific Aims…………………..……………………………………………….7

Materials and methods….……………………………………………………..8
1. Mice……………………………………………………………………..…….8
2. Animal model of Thioacetamide (TAA)-induced liver injury…………...8
3. Animal model of CCl4 (Sigma-Aldrich)-induced liver injury…….…….8
4. Animal model of high-fat diet-induced metabolic liver injury…..…….9
5. Mouse IL-24 protein treatments……………..……………………………9
6. Sample collection and serum biochemistry……………………………..9
7. Mice body weight measurement…………………………….……………9
8. ELISA assay………………………......……………………………………10
9. Histology………………………...…………………………....……………10
10. RTQ-PCR……………………………………………………………………11
11. Plasmid DNA preparation………………….……………………………..11
12. Intramuscular electroporation……………………………………...……12
13. Detection of exogenous mIL-24 in mice serum by ELISA…………...12
14. Expression and purification of mouse IL-24…………………..………13
15. Statistical analysis…………………………………………………………14

Results.………………………….…………………………………….………..15
1. IL-20R2 deficiency induced more severe effects in liver compared to wild-type mice under short-term TAA-induced liver injury.……………......15
2. IL-20R2 deficiency induced more severe effects in liver compared to wild-type mice under long-term TAA-induced liver injury………………....16
3. IL-20R2 deficiency induced more severe effects in liver compared to wild-type mice under long-term CCl4-induced liver injury.…………..…...17
4. IL-20R2 deficiency induced more severe effects in liver compared to wild-type mice under high-fat diet-induced metabolic liver injury…….…17
5. Intramuscular electroporation of pcDNA3.1-IL-24 protected mice from short-term TAA-induced liver injury…………………………..…...……18
6. Recombinant mIL-24 protein treated mice were resistant to short-term TAA-induced liver injury…………………………………….....…..……. 19

Discussion………………………………………………………..……………….20

References…………………………….…………………………….……………24

Table……………………………………………………………………………….28

Figure and figure legends…………….………………………………………...33

Contents of Table

Table 1. Schematic representation of IL-20R2 knockout construction..28
Table 2. A PCR genotyping strategy to distinguish WT and IL-20R2 KO was established using specific primers………………..................………..29
Table 3. Comparison of liver fibrosis between CCl4 and TAA-treated mice………........................................................................................….30
Table 4. Primer pairs used for amplifying transcrips………………….....31
Table 5. Characteristics of Interleukin 24………………………......……..32

Contents of Figure

Figure 1. IL-20R2 deficiency showed lower survival rate in short-term TAA-induced liver injury…………...…..…………………………….....……...33
Figure 2. IL-20R2-deficient mice lost more body weight in short-term TAA-induced liver injury………………………………..…………….…….…..34
Figure 3. IL-20R2-deficient mice showed larger necrosis area in short-term TAA-induced liver injury…….……………..……………………………..35
Figure 4. IL-20R2-deficient mice had higher serum AST and ALT in short-term TAA-induced liver injury……………………………………..…………...36
Figure 5. IL-20R2-deficient mice showed more severe jaundice and gallbladder enlargement in short-term TAA-induced liver injury………....37
Figure 6. IL-20R2 deficiency induced more pro-inflammatory and pro-fibrogenic cytokines in short-term TAA-induced liver injury……..…….....38
Figure 7. IL-20R2 deficiency induced more fibrosis under long-term TAA-induced liver injury……………..…………………………………..……………39
Figure 8. IL-20R2-deficient mice showed no protective effect in serum TGF-β value in long-term TAA-induced liver injury..................................40
Figure 9. IL-20R2-deficient mice had higher serum AST, ALT and bilirubin, and showed lower triglyceride and cholesterol in long-term TAA-induced liver injury…..............................................................................41
Figure 10. IL-20R2 deficiency induced more pro-inflammatory and pro-fibrogenic cytokines in long-term TAA-induced liver injury………………..42
Figure 11. IL-20R2 deficiency induced more fibrosis in long-term CCl4-induced liver injury………………....…………………………………………...43
Figure 12. IL-20R2-deficient mice showed enlarged liver and spleen in long-term CCl4-induced liver injury……………………………..…………...44
Figure 13. IL-20R2-deficient mice had higher serum TGF-β in long-term CCl4-induced liver injury……………….....……………………………….…..45
Figure 14. IL-20R2-deficient mice had higher serum AST, ALT and bilirubin in long-term CCl4-induced liver injury…………………………………….....46
Figure 15. IL-20R2 deficiency induced more severe hepatic steatosis and fibrosis in HFD-induced metabolic liver injury……………………….....…..47
Figure 16. IL-20R2-deficient mice had higher serum AST and ALT in HFD-induced metabolic liver injury………………………………………...……….48
Figure 17. Detection of exogenous mIL-24 in mouse serum after electroporation…...................................................................................49
Figure 18. Intramuscular electroporation of pcDNA3.1-IL-24 increased the survival rate of mice in short-term TAA-induced liver injury……………...50
Figure 19. Intramuscular electroporation of pcDNA3.1-IL-24 decreased body weight lose of mice in short-term TAA-induced liver injury………...51
Figure 20. Intramuscular electroporation of pcDNA3.1-IL-24 decreased liver necrosis area of mice in short-term TAA-induced liver injury..……...52
Figure 21. Intramuscular electroporation of pcDNA3.1-IL-24 decreased serum AST and ALT of mice in short-term TAA-induced liver injury…..…53
Figure 22. Intramuscular electroporation of pcDNA3.1-IL-24 decreased pro-inflammatory and pro-fibrogenic cytokines in mice liver in short-term TAA-induced liver injury…………......……………………..…………………..54
Figure 23. IL-24 increased the survival rate of mice in short-term TAA-induced liver injury…………………………………………………..…………..55
Figure 24. Recombinant IL-24 protein-treated mice lost less body weight in short-term TAA-induced liver injury…………………………………….….56
Figure 25. Recombinant IL-24 protein-treated mice showed smaller liver necrosis area in short-term TAA-induced liver injury…………………….…57
Figure 26. Recombinant IL-24 protein-treated mice had lower serum AST and ALT in short-term TAA-induced liver injury……………………………..58
Figure 27. Recombinant IL-24 protein-treated mice had lower pro-inflammatory and pro-fibrogenic cytokines in mice liver in short-term TAA-induced liver injury……….......................................................................59
參考文獻 1. Blumberg H, Conklin D, Xu WF, Grossmann A, Brender T, et al. Interleukin 20: discovery, receptor identification, and role in epidermal function. Cell 104: 9-19 (2001).
2. Dumoutier L, Leemans C, Lejeune D, Kotenko SV, Renauld JC, Cutting edge: STAT activation by IL-19, IL-20 and mda-7 through IL-20 receptor complexes of two types. J Immunol 167: 3545-3549 (2001).
3. Parrish-Novak J, Xu W, Brender T, Yao L, Jones C, et al. Interleukins 19, 20, and 24 signal through two distinct receptor complexes. Differences in receptor-ligand interactions mediate unique biological functions. J Biol Chem 277: 47517-47523 (2002).
4. Nagalakshmi ML, Murphy E, McClanahan T, de Waal Malefyt R, Expression patterns of IL-10 ligand and receptor gene families provide leads for biological characterization. Int Immunopharmacol 4: 577-592 (2004).
5. Wei CC, Chen WY, Wang YC, Chen PJ, Lee JY, et al. Detection of IL-20 and its receptors on psoriatic skin. Clin Immunol 117: 65-72 (2005).
6. Chen WY, Cheng BC, Jiang MJ, Hsieh MY, Chang MS, IL-20 is expressed in atherosclerosis plaques and promotes atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 26: 2090-2095 (2006).
7. Hsu YH, Chang MS, Interleukin-20 antibody is a potential therapeutic agent for experimental arthritis. Arthritis Rheum 62: 3311-3321 (2010).
8. Li HH, Cheng HH, Sun KH, Wei CC, Li CF, et al. Interleukin-20 targets renal mesangial cells and is associated with lupus nephritis. Clin Immunol 129: 277-285 (2008).
9. Wei CC, Li HH, Hsu YH, Hsing CH, Sung JM, et al. Interleukin-20 targets renal cells and is associated with chronic kidney disease. Biochem Biophys Res Commun 374: 448-453 (2008).
10. Hsu YH, Chen WY, Chan CH, Wu CH, Sun ZJ, et al. Anti-IL-20 monoclonal antibody inhibits the differentiation of osteoclasts and protects against osteoporotic bone loss. J Exp Med 208: 1849-1861 (2011).
11. Wei CC, Hsu YH, Li HH, Wang YC, Hsieh MY, et al. IL-20: biological functions and clinical implications. J Biomed Sci 13: 601-612 (2006).
12. Hsu YH, Li HH, Hsieh MY, Liu MF, Huang KY, et al. Function of interleukin-20 as a proinflammatory molecule in rheumatoid and experimental arthritis. Arthritis Rheum 54: 2722-2733 (2006).
13. Li HH, Hsu YH, Wei CC, Lee PT, Chen WC, et al. Interleukin-20 induced cell death in renal epithelial cells and was associated with acute renal failure. Genes Immun 9: 395-404 (2008).
14. Hsu YH, Hsing CH, Li CF, Chan CH, Chang MC, et al. Anti-IL-20 monoclonal antibody suppresses breast cancer progression and bone osteolysis in murine models. J Immunol 188: 1981-1991 (2012).
15. Chiu YS, Wei CC, Lin YJ, Hsu YH, Chang MS, IL-20 and IL-20R1 antibodies protect against liver fibrosis. Hepatology 60: 1003-1014 (2014).
16. Friedman SL, Liver fibrosis -- from bench to bedside. J Hepatol 38 Suppl 1: S38-53 (2003).
17. Van de Bovenkamp M, Groothuis GM, Meijer DK, Olinga P, Liver fibrosis in vitro: cell culture models and precision-cut liver slices. Toxicol In Vitro 21: 545-557 (2007).
18. Friedman SL, Mechanisms of hepatic fibrogenesis. Gastroenterology 134: 1655-1669 (2008).
19. Gines P, Cardenas A, Arroyo V, Rodes J, Management of cirrhosis and ascites. N Engl J Med 350: 1646-1654 (2004).
20. Liedtke C, Luedde T, Sauerbruch T, Scholten D, Streetz K, et al. Experimental liver fibrosis research: update on animal models, legal issues and translational aspects. Fibrogenesis Tissue Repair 6: 19 (2013).
21. Friedman SL, Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 88: 125-172 (2008).
22. Gressner AM, Weiskirchen R, Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-beta as major players and therapeutic targets. J Cell Mol Med 10: 76-99 (2006).
23. Corazza N, Badmann A, Lauer C, Immune cell-mediated liver injury. Semin Immunopathol 31: 267-277 (2009).
24. Bataller R, Brenner DA, Liver fibrosis. J Clin Invest 115: 209-218 (2005).
25. Ramachandran P, Iredale JP, Liver fibrosis: a bidirectional model of fibrogenesis and resolution. Qjm 105: 813-817 (2012).
26. Clouzeau-Girard H, Guyot C, Combe C, Moronvalle-Halley V, Housset C, et al. Effects of bile acids on biliary epithelial cell proliferation and portal fibroblast activation using rat liver slices. Lab Invest 86: 275-285 (2006).
27. Hajovsky H, Hu G, Koen Y, Sarma D, Cui W, et al. Metabolism and toxicity of thioacetamide and thioacetamide S-oxide in rat hepatocytes. Chem Res Toxicol 25: 1955-1963 (2012).
28. Kang JS, Wanibuchi H, Morimura K, Wongpoomchai R, Chusiri Y, et al. Role of CYP2E1 in thioacetamide-induced mouse hepatotoxicity. Toxicol Appl Pharmacol 228: 295-300 (2008).
29. Ding Z, Zhuo L, Attenuation of hepatic fibrosis by an imidazolium salt in thioacetamide-induced mouse model. J Gastroenterol Hepatol 28: 188-201 (2013).
30. Starkel P, Leclercq IA, Animal models for the study of hepatic fibrosis. Best Pract Res Clin Gastroenterol 25: 319-333 (2011).
31. Zou Y, Li J, Lu C, Wang J, Ge J, et al. High-fat emulsion-induced rat model of nonalcoholic steatohepatitis. Life Sci 79: 1100-1107 (2006).
32. Caudell EG, Mumm JB, Poindexter N, Ekmekcioglu S, Mhashilkar AM, et al. The protein product of the tumor suppressor gene, melanoma differentiation-associated gene 7, exhibits immunostimulatory activity and is designated IL-24. J Immunol 168: 6041-6046 (2002).
33. Zdanov A, Structural studies of the interleukin-19 subfamily of cytokines. Vitam Horm 74: 61-76 (2006).
34. Wang M, Tan Z, Zhang R, Kotenko SV, Liang P, Interleukin 24 (MDA-7/MOB-5) signals through two heterodimeric receptors, IL-22R1/IL-20R2 and IL-20R1/IL-20R2. J Biol Chem 277: 7341-7347 (2002).
35. Leath CA, 3rd, Kataram M, Bhagavatula P, Gopalkrishnan RV, Dent P, et al. Infectivity enhanced adenoviral-mediated mda-7/IL-24 gene therapy for ovarian carcinoma. Gynecol Oncol 94: 352-362 (2004).
36. Gupta P, Su ZZ, Lebedeva IV, Sarkar D, Sauane M, et al. mda-7/IL-24: multifunctional cancer-specific apoptosis-inducing cytokine. Pharmacol Ther 111: 596-628 (2006).
37. Menezes ME, Bhatia S, Bhoopathi P, Das SK, Emdad L, et al. MDA-7/IL-24: multifunctional cancer killing cytokine. Adv Exp Med Biol 818: 127-153 (2014).
38. Amirzada MI, Jin J, Therapeutic Applications of Interleukin 24 (IL24): A Review. Tropical Journal of Pharmaceutical Research 11 (2013).
39. Ramadori G, Moriconi F, Malik I, Dudas J, Physiology and pathophysiology of liver inflammation, damage and repair. J Physiol Pharmacol 59 Suppl 1: 107-117 (2008).
40. Liu Y, Meyer C, Xu C, Weng H, Hellerbrand C, et al. Animal models of chronic liver diseases. Am J Physiol Gastrointest Liver Physiol 304: G449-468 (2013).
41. Xu ZJ, Fan JG, Ding XD, Qiao L, Wang GL, Characterization of high-fat, diet-induced, non-alcoholic steatohepatitis with fibrosis in rats. Dig Dis Sci 55: 931-940 (2010).
42. Adam R, Hoti E, Liver transplantation: the current situation. Semin Liver Dis 29: 3-18 (2009).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw