進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-3007201420385400
論文名稱(中文) 應用有限元素法於輪胎之擬靜態壓縮反應及動態側滑滾動行為研究
論文名稱(英文) A Study of the Quasi-static Compression Responses and Side Slip Rolling Behavior for Tires Using Finite Element Methods
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 102
學期 2
出版年 103
研究生(中文) 鄭鈺潔
研究生(英文) Yu-Chieh Cheng
學號 P46014202
學位類別 碩士
語文別 中文
論文頁數 105頁
口試委員 指導教授-鄭泗滄
口試委員-楊世銘
口試委員-楊文彬
中文關鍵字 滾動與接觸分析  輪胎  有限元素分析  複合材料  橡膠 
英文關鍵字 contact analysis  tires  FEM  composite  rubber 
學科別分類
中文摘要 本文之研究目的主要在於探討先進複材輪胎的動態滾動行為及側滑滾動之力學響應,研究車用輪胎在動態滾動時的行為。使用古典基層板理論,依據其各部分材料與角度上組成的差異,轉換成工程常數,計算出其材料性質,以此描述輪胎複雜的結構。由於輪胎表層胎面以及胎體部份,屬於純橡膠材料,且為大變形之非線性彈性材料,使用Mooney-Rivlin模型去描述。透過前處理建構出輪胎複雜的結構,並運用商用有限元素軟體LS-DYNA模擬計算輪胎受壓縮之正向接觸反力,與實驗值做比較,其模擬與實驗的結果能夠有相當一致的結果。除此之外,觀察三種不同花紋輪胎在60km/hr滾動速度下之力學響應以及接觸面壓力分佈,與M. H. R. Ghoreishy於2006年發表的文章做比較,有相似的壓力分佈趨勢。並將輪胎之滾動狀況做更深入的探討,加入側滑角的影響,觀察輪胎在側滑滾動下的力學響應,與M. Shiraishi等人之資料做驗證,可得到一致的趨勢結果,並藉由改變垂直負載、輪胎與路面之摩擦係數、輪胎滾動速度以及輪胎胎紋,觀察並討論模擬計算後的結果。此外,使用輪胎與路面接觸面壓力之分佈,探討接觸面壓力與輪胎滾動磨耗的關係,並藉由觀察輪胎於側滑滾動時的接觸面壓力分佈,預估輪胎的磨耗趨勢。藉由有限元素軟體的模擬,提供可靠的數據去判斷輪胎的力學行為,且能透過本文之模擬成果希望能提供給工程人員參考並能減少所花費的實驗與時間成本,為本文主要之研究目的。
英文摘要 The purpose of this work is to study the rolling contact responses of inflated pneumatic radial tires with a quarter vertical car weight loaded initially. Structure of tire contains the rubber tread and reinforcing composite layers (i.e., the inner layer, carcass, bead filler and bead wires). The Mooney-Rivlin constitute law was adopted to describe the large deformation and non-linear behavior of rubber material. The classical laminated theory was used to model the mechanical responses for the reinforcing composite layers. In the present study, the 235/45R17 radial tires with three tread patterns were chosen to study the dynamic contact rolling responses when tires rolled on a dry pavement. Finite Element Commercial Codes – LS-DYNA was used to simulate the smooth pattern tire’s quasi-static response in order to compare the normal contact forces obtained from both FEM commercial codes and compressive test data. The result revealed that experimental data for the wheel compressed on the compression device had consistency with LS-DYNA simulated normal contact forces. Current LS-DYNA tire models were then used to simulate the process of the tire side slip rolling under different conditions (i.e., different vertical loading, coefficient of friction and rolling velocity). By observing the relationship between tire contact pressure and tire wear, then we predicted the wear of tire when tire side slip rolling under different slip angle.
論文目次 第一章 緒論 1
1-1 研究背景 1
1-2研究動機 3
1-3研究目的 4
1-4 輪胎結構組成與術語介紹 5
1-5 文獻回顧 6
1-5-1 靜態模擬 6
1-5-2 動態滾動接觸行為 7
1-5-3 輪胎磨耗預估 8
1-6研究方法 9
第二章 理論背景 10
2-1 橡膠之超彈性理論 10
2-2 簾布層之材料組成與座標規劃 12
2-2-1 簾布層規劃 16
2-2-2單層等效混和定律(Rule of Mixtures) 16
2-2-3 古典基層板理論(Classical Laminated Theory) 18
2-3 隱式法(Implicit Method)與顯式法(Explicit Method) 21
2-3-1 Implicit數值方法之理論介紹 22
2-3-2 Explicit數值方法之理論介紹 28
2-3-3 LS-DYNA中Implicit與Explicit的使用技巧 29
第三章 輪胎結構之有限元素模型 31
3-1 胎面有限元素模型與元素選定 31
3-2 光頭胎輪胎與直排花紋輪胎有限元素模型 32
3-3 簾布層、胎邊與胎唇有限元素模型與元素選定 33
3-4 鋼圈、路面有限元素模型與元素選定 33
3-5 空氣層有限元素模型與元素選定 34
3-6 座標設定 34
第四章 輪胎擬靜態壓縮模擬驗證 35
4-1模擬環境物理假設 35
4-2 擬靜態模擬結果 36
4-3 輪胎截面之最大斷寬值 38
第五章 輪胎之動態滾動接觸分析數值研究 39
5-1 定義輪胎滾動模組之運動作用時間 39
5-2 定義輪胎滾動模組之模擬環境 40
5-3 應用動態滾動模組於平地路面之力學響應 41
5-4 模擬結果比較 45
5-5 輪胎於側滑滾動之力學響應 45
5-5-1 模擬環境設定 45
5-5-2 側滑滾動模擬結果驗證 49
5-6改變側滑模擬環境設定之比較 52
5-6-1 車重垂直負載對側向力之影響 52
5-6-2 摩擦係數對側向力之影響 53
5-6-3 輪胎滾動速度之影響 54
5-6-4 輪胎胎紋對側向力之影響 54
5-7 輪胎磨耗之預估 56
5-7-1 與Zuo, Zheng等人之資料驗證 58
5-7-2預測輪胎側滑滾動之磨耗 59
5-8 模擬結果討論 61
第六章 結論與未來展望 62
6-1 結果與討論 62
6-2 未來展望 64
參考文獻 102
參考文獻 [1] 丁羽辰,“車用先進輪胎之擬靜態壓縮實驗及動態滾動反應之數值研究”,國立成功大學航空太空工程研究所碩士論文, 2006.
[2] 中華民國國家標準CNS 7135 D2087, 汽車用輕合金盤型輪圈, 1995.
[3] 正新橡膠工業股份有限公司官方網頁, http://www.cst.com.tw/ .
[4] 邱元升, “車用輪胎之動態滾動接觸行為與胎紋排水性研究”, 國立成功大學航空太空工程研究所碩士論文, 2008.
[5] 林家弘, “輪胎磨耗不均與接地壓力關係之研究”,國立台灣大學機械工程研究所碩士論文, 1999.
[6] 黃義雄, “輪胎爆胎的分析和改善”, 國立台灣大學機械工程研究所碩士論文, 1997.
[7] 黃敏祥, 許榮均, “輪胎噪音產生機制研究探討”, 中華民國力學學會第三十六屆全國力學會議,2012.
[8] 勢流科技股份有限公司, 結構分析軟體LS-DYNA技術講座Implicit/Explicit, pp.38-40, 2006.
[9] Clark, S. K., “Mechanics of Pneumatic Tires”, U.S. Department of Transportation, National Highway Traffic Safety Administration, Washington, pp.2-3, 1981.
[10] Chung, T. J., “Continuum Mechanics”, Prentice Hall, Englewood Cliffs, New Jersey,pp.104-106, 1988.
[11] Chung, T. J., “Continuum Mechanics”, Prentice Hall, Englewood Cliffs, New Jersey, pp.140-142, 1988.
[12] Dahlquist, G. and Björck, Å., “Numerical Method”, Englewood Cliffs, New Jersey, pp.222-223, 1974.
[13] Grosch, K. A., “Abrasion of rubber and its relation to tire wear.” Rubber Chemistry and Technology, Vol.65, No.1, pp.78-106, 1992.
[14] Ghoreishy, M. H. R., “Steady state rolling analysis of a radial tyre:comparison with experimental results” , Proceedings of the Institution of Mechanical Engineers -- Part D -- Journal of Automobile Engineering,Vol.220, No.6, pp.713-721, 2006.
[15] Gibson, R. F., “Principles of Composite Material Mechanics”, Second Edition, Taylor & Francis Group , LLC , Boca Raton, pp.91-107, 2007.
[16] Genta, G. and Morello, L., “The Automotive Chassis”, Vol. 1, Components Design, Italy, pp.100-109, 2009.
[17] Humar, J. L., “Dynamics of Structures”, Second Edition, Lisse ;A.A. Balkema Publishers, Exton, PA, pp.408-412,2002.
[18] Hallquist, J. O., “LS-DYNA Keyword User’s Manual”,Vol 1,Livermore Software Technology Corp., Livermore, CA, 2007.
[19] Jenq, S. T. and Mo, J. J., “Ballistic impact response for two-step braided three-dimensional textile composite”, AIAA Journal, Vol.34, No.2, pp.375-384, 1996.
[20] Jenq, S. T., Kuo, J. T. and Sheu, L. T., “Ballistic impact response of 3-D four-step braided glass/epoxy composites”, Key Engineering Materials, Vol. 141-143, in Part 1: Impact Response and Dynamic Failure of Composites and Laminate Materials, pp.349-366, 1998.
[21] Jenq, S. T., Ting, Y. C., Liang, S. M., Lin, D. and Shih, M., “Quasi-static Compression and Rolling Contact Analysis of MAXXIS VICTRA MA-Z1 Tire on Dry Roadway”, International Journal of Modern Physics B, Vol. 22, No. 9, pp.1531-1537, 2008.
[22] Jenq, S. T. and Chiu, Y. S., “Hydroplaning analysis for tire rolling over water film with various thicknesses using the LS-DYNA fluid-Structure interactive scheme.”, Computers, Materials & Continua (CMC), Vol.11, No.1, pp. 33-58, 2009.
[23] Lechtenboehmer, A., Moneypenny, H. G. and Mersch, F., “A review of polymer interfaces in tyre technology”, British Polymer Journal, Vol.22, No.4, pp.265-301, 1990.
[24] Liu, G. Q. and Owen, D. R. J., “The computer simulation rubber components and composites”, Composites Science and Technology, Vol.36, pp.267-281, 1989.
[25] Nakajima, Y., Seta, E., Kamegawa, T. and Ogawa, H., “Hydroplaning analysis by FEM and FVM:effect of tire rolling and tire pattern on hydroplaning”, International Journal of Automotive Technolngy, Vol.1, No.1, pp.26-34, 2000.
[26] Ogden, R. W., “Recent advances in the phenomenological theory of rubber elasticity,” Rubber Chemistry and technology, Vol.59,No.3, pp.361~382, 1986.
[27] Reismann, H. and Pawlik, P. S., “Elasticity:Theory and Applications”, John Wiley, New York, pp.128-135, 1980.
[28] Rao, K. V. N., Kumar, R. K., Bohara, B. C. and Mouli, C. P., “Dynamic analysis of tyre cornering behavior using explicit finite element code”, Proceedings of Twenty First Southeastern Conference On Theoretical And Applied Mechanics, 2002.
[29] Society of Automotive Engineers, http://www.sae.org/.
[30] Shiraishi, M., Yoshinaga, H., Miyori, A. and Takahashi, E., “Simulation of dynamically rolling tire”, Tire Science and Technology, Vol. 28, No. 4, pp. 264-276, 2000.
[31] Truesdell, C., “Continuum Mechanics”, Gordon and Breach, New York, pp.379-397, 1965.
[32] Zheng, D., “Prediction of tire tread wear with FEM steady state rolling contact simulation”, Tire Science and Technology, Vol. 31, No. 3, pp. 189-202, 2003.
[33] Zuo, S. G., Ni T. X., Wu, X. D., Wu, K. and Yang, X. W., “Prediction procedure for wear distribution of transient rolling tire”, International Journal of Automotive Technology, Vol. 15, No. 3, pp. 505−515, 2014.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-14起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw