進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-3007201417562600
論文名稱(中文) 建築能源管理系統的減碳效果與成本效益分析─以台北101為例
論文名稱(英文) Carbon Dioxide Emission Reduction and Cost Benefit Analysis of Building Energy Management System - The Case of Taipei 101
校院名稱 成功大學
系所名稱(中) 電信管理研究所
系所名稱(英) Institute of Telecommunications and Management
學年度 102
學期 2
出版年 103
研究生(中文) 吳欣蓉
研究生(英文) Hsin-Jung Wu
學號 R96004039
學位類別 碩士
語文別 英文
論文頁數 77頁
口試委員 指導教授-廖俊雄
口試委員-李威勳
口試委員-呂錦山
口試委員-康信鴻
口試委員-曾柏興
中文關鍵字 建築能源管理系統  節能  二氧化碳排放  台北101 
英文關鍵字 building energy management system  energy saving  CO2 emission  Taipei 101 
學科別分類
中文摘要 隨著環保意識的升起, 許多國家與環保組織開始注重環境保護的議題,如:全球暖化。造成全球暖化的主因是溫室氣體的排放,其中又以二氧化碳為主要影響氣體,大部分是因為能源、工業、交通以及居住活動所產生。現今隨著人口數與都市化的上升,住宅與商業建築的數量也快速的上升。同時間能源消耗與二氧化碳的排放也隨之快速上升,因此建築減少二氧化碳成為了一個主要的議題。此外建築的流程與許多原物料相關,如供電供水的能源。由於都市化的成長,對於原物料的需求也跟著上升,相對的,原物料的價格也跟著上升。這些動機都會讓加築物為了節省成本而增加了裝設節能系統的需求。許多建築都裝設建築能源管理系統(BEMS),BEMS透過感應器偵測環境狀態,了解使用者狀態與活動,並蒐集了相關的資料。當發生異常情況,感應器會透過網路傳送訊號給伺服器,接著伺服器透過促動器控制設備來減少建築物內不必要的能源浪費。BEMS幫助建築能源管理者使用這些工具來控制建築能源消耗,並且使管理的工作更加簡單且有效率。
為了達到由美國綠色建築委員會發行的能源環保領導設計白金級的認證,從2009年開始,台北101開始致力於在綠建築活動上更有效率的使用能源,並且進行了一連串辦公大樓公共區域的節能減碳活動。為了增加能源使用的效率,許多沒效率的設備被更有能源使用效率的設備所取代,另外一些建築運作上非必要的程式也被修正並改善。例如:在公共區域的燈泡由T8改用成T5或LED;冷氣系統的排風機運作排程也被修正,進而建少能源消耗。在LEED認證同年,台北101也與西門子合作架設了能源管理控制系統(EMSC),EMCS是用來監控、分系和控制五個子系統(包含:冷氣、照明、電力、水與其他子系統)的設備狀況,使建築管理自動化與最佳化並增加能源使用效率。經由完整的規劃,BEMS的運作與建築物內HAVC及設備的控管,最終得以全部的能源使用得到最佳化。也因有著正確的管理系統,台北101在節能減碳上有傑出的表現。
本研究以LEED認證的最高建築之一,且為台灣地標性摩天大樓「台北101」做為研究對象,找出裝設BEMS之後的節能減碳效果。本研究使用的資料包含BEMS裝設前後與設備更換前後的能源數據、電力排放與水排放係數、電與水的價格以及二氧化碳的交易價格。BEMS的資料包含系統相關成本以及五個BEMS所監控的子系統的電力消耗。設備更換的方案有11項,其資料包含設備成本、電與水的消耗情況以及三個在2009至2011更換設備的系統。其次計算BEMS與設備更換的節電、節水、二氧化碳減量的效果以及其成本效益分析(CBA)來研究BEMS裝設的投資效益。CBA分析分成三個時期並且使用三個情境假設(包含:樂觀、一般與悲觀),情境假設不同的節電效果與營運成本的增長,並用了淨現值(NPV)、內部報酬率(IRR)、益本比(BCR)與回收期限(PP)。整體而言,對於台北101是值得投資。結果顯示當情境成果大於一般情境的十年以上或者考慮二氧化碳減量的效益時BEMS不只可以有效的節能與減碳,同時也可以減少公司的成本並提升其效益。此外,CBA結果證明當時間其間較長與較好的情境備考慮時,會得到較高的NPV、IRR與BCR和較短的PP。
英文摘要 In the period of environmental consciousness, countries and environmental organizations pay increasing attention to environmental protection issues, such as global warming. The reason of global warming is from the emission of the greenhouse gas (GHG), mainly resulted by carbon dioxide (CO2). Thus, reducing CO2 becomes a priority in controlling GHGs. The largest source of CO2 emissions is the use of energy, industrial, transportation, residential activities. Nowadays, with the addition of the population and urbanization, the quantity of the residential and commercial buildings in cities is growing rapidly. At the same time, with the addition of the buildings, the energy consumption and CO2 emission is growing rapidly, and reducing the CO2 emissions which made by the building had became one of the priority projects. In addition, many processes are associated with the raw materials, such as the energy which supports the electricity, and the water supplements. With the increase of urbanization, the demand of raw materials increase simultaneously, and the market pushed raw material prices to unknown levels. This motivation also increases the demand for the building using energy saving system in order to reduce the maintenance costs. Many buildings have installed building energy management system (BEMS), which is used via sensors to aware environmental status, to understand user’s status and activities, and gathers the data of various sensors and equipment states. In a case of an abnormal situation, the sensor can send the signal via the network to communicate to the server which in turn uses the actuator to control the equipments to reduce the unnecessary waste in the building. BEMS helps the building energy manager use these informational tools to control building energy consumption and make managerial jobs become easier and more efficient.
In order to achieve the Leadership in Energy and Environmental Design (LEED) for existing buildings in the category of operations & maintenance (LEED-EBOM), Green Building Mark’s platinum level, started in 2009, Taipei 101 has endeavored in efficient energy usage in green building operation and has done a series of activities to reduce the energy consumption and CO2 emissions of the public area of the office building. To increase energy use effectively, a lot of inefficient equipments have been replaced and improved into the energy efficient equipments, and unnecessary programming of building operating were modified and optimized. For example, the lamps in the public area are changed from the original T8 lamps to the T5 or LED lamps, and ventilation operating hours of air condition system were modified to reduce electricity consumption. In the same year of the LEED certification process, Taipei 101 commissioned Siemens to build the energy monitoring and control system (EMCS), which monitors, analyzes and controls the facilities status of five subsystems of air conditioning, illumination, electrical, water and other monitoring system to increase energy efficiency with advanced building automation and optimization. Through the complete planning, the BEMS operates and controls the HVAC and other facilities in the building, and eventually makes overall energy usage to be optimization. By doing so, Taipei 101 has excellent performance on energy efficiency and CO2 reduction, and corrects management system.
This study takes the tallest certified green building Taipei 101 building, the landmark skyscraper in Taiwan, as the research object and finds out the effectiveness of the BEMS on the building. The data of Taipei 101 energy usage before and after the BEMS installation and operation, energy saving equipment replacement project, national electricity and water emission factors, electricity and water prices, and CO2 trading price are collected. The BEMS data include system cost and the electricity consumptions of five subsystems which are monitored by BEMS. The data of eleven equipment replacement projects include equipment costs and electricity and water consumptions of three systems which were replaced during 2009 to 2011. The electricity and water saving effect and CO2 emission reduction effect, and their cost and benefit analysis (CBA) of BEMS and equipment replacement are conducted for the system to investigate the investment on installing BEMS. The CBA of the BEMS in the time periods of ten years, twenty years, and thirty years under three scenarios (including optimistic, ordinary and pessimistic) with different assumptions of different increases in electricity saving and operating costs are conducted to derive the values of net present value (NPV), internal rate of return (IRR), benefit-cost ratio (BCR), and payback period (PP). Overall, the BEMS is worthy to invest for Taipei 101. The results show that the installation of BEMS not only reduces energy consumption and CO2 emissions effectively but also reduces the enterprise’s cost and incurs the benefit to the enterprise when the time period of more than ten years and the scenario better than ordinary scenario are considered in the analysis or when the benefits of CO2 emission reductions are considered. Further, the CBA results improve with higher NPV, IRR, and BCR values and shorter PP when longer time periods or better scenarios are considered.
論文目次 Abstract i
Table of Contents I
List of Tables II
List of Figures III
Chapter One Introduction 1
1.1 Background and Motivation 1
1.2 Research Objectives 5
Chapter Two BEMS and Taipei 101 7
2.1 Infrastructure of the BEMS 7
2.2 BEMS in Taipei 101 9
Chapter Three Literature Review 13
3.1 Energy Saving and Carbon Dioxide Emission Reduction of BEMS 13
3.2 Cost-Benefit Analysis (CBA) 18
Chapter Four Cost and Benefit Evaluation of Taipei 101’s BEMS 24
4.1 Data 24
4.2 Cost and Benefit Evaluation of BEMS Monitoring 27
4.3 Cost and Benefit Evaluation of Equipment Replacement 30
4.3.1 Air Condition System 30
4.3.2 Illumination System 33
4.3.3 Water System 39
Chapter Five Cost and Benefit Analysis of Taipei 101’s BEMS 43
5.1 Scenario Assumption 43
5.2 The CBA Result in Accounting Value 44
5.3 The CBA Result in Economic Value 49
5.4 A Summary 53
Chapter Six Conclusion 56
6.1 Discussion 56
6.2 Managerial Implication 57
6.3 Limitations and Future Research 62
Reference 64
Appendix A Policies to Reduce GHG Emissions in Building Sector 72
Appendix B Figure of Equipment replacement in Taipei 101 73
參考文獻 1. American Physical Society (2008). How America can look within to achieve energy security and reduce global warming. Retrieved from http://www.aps.org/
energyefficiencyreport/report/aps-energyreport.pdf
2. Anandarajah, G., Strachan, N. (2010). Interactions and implications of renewable and climate change policy on UK energy scenarios. Energy Policy, 38(11), 6,724-6,735.
3. Authenticated U.S. Government Information (2009). Executive Order 13514- Federal Leadership in Environmental, Energy, and Economic Performance. Retrieved from http://www.gpo.gov/fdsys/pkg/DCPD-200900783/pdf/
DCPD-200900783.pdf
4. Barclays (2012). U.S. aggregate bond index. Retrieved from https://ecommerce
.barcap.com/indices/action/indexDownload?id=f5eb0a34ea35c399020580f8471fa68&randomParam=0.811275026993826&pageId=9
5. Bakos, G. C., Soursos, M., & Tsagas, N. F., (2003). Technoeconomic assessment of a building-integrated PV system for electrical energy saving in residential sector. Energy and Buildings, 35(8), 757-762.
6. Beecher, J. A. (2012). Trends in consumer prices (CPI) for utilities through 2011. Retrieved from http://www.ipu.msu.edu/research/pdfs/IPU-Consumer-Price-
Index-for-Utilities-2011-2012.pdf
7. Bristow, A. L., & Nellthorp, J. (2000). Transport project appraisal in the European Union. Transport Policy, 7(1), 51–60.
8. Bureau of Energy (2010). Introduction of each lamp. Retrieved from http://energymonthly.tier.org.tw/Report/201006/32.pdf
9. Bureau of energy (2011). National electricity emission factor in 2011. Retrieved from http://web3.moeaboe.gov.tw/ECW/yhnpopulace/content/SubMenu.aspx?
menu_id=114
10. Business Dictionary (2014a). Net present value (NPV). Retrieved from http://www.businessdictionary.com/definition/net-present-value-NPV.html
11. Business Dictionary (2014b). Internal rate of return (IRR). Retrieved from http://www.businessdictionary.com/definition/internal-rate-of-return-IRR.html
12. Castleton, H. F., Beck, S. B. M., Hathwat, E. A., & Murphy, E. (2013). Exceeding energy consumption design expectations. Retrieved from http://repository.tamu.edu/bitstream/handle/1969.1/151424/ESL-IC-13-10-18.pdf?sequence=1
13. Chen (2011). The present situation of global carbon market. Retrieved from http://www.libnet.sh.cn:82/gate/big5/www.istis.sh.cn/list/list.aspx?id=7250
14. Clark, G., & Mehta, P. (1997). Artificial intelligence and networking in integrated building management systems. Automation in Construction, 6(5), 481-498.
15. Clarke, J. A., Cockroft, J., Conner, S., Hand, J. W., Kelly, N. J., Moore, R., O’Brien, T. & Strachan, P. (2002). Simulation-assisted control in building energy management systems. Energy and Buildings, 34, 933-940.
16. Coates (2000). Scenario planning. Retrieved from http://www.josephcoates.com/
pdf_files/232_Scenario_Planning.pdf
17. Colmenar-Santos, A., Terán de Lober, L. N., Borge-Diez, D., & Castro-Gil, M (2013). Solutions to reduce energy consumption in the management of large buildings. Energy and Buildings, 56, 66-77.
18. Concept Consulting Group (2004). Electricity emissions factor review- Prepared for NZ climate change office. Retrieved from http://www.concept.co.nz
/uploads/00039.pdf
19. David, R., Ngulube, P. & Dube, A., (2013). A cost-benefit analysis of document management strategies used at a financial institution in Zimbabwe: A case study. SA Journal of Information Management, 15(2), 1-10.
20. De Dear, R. (2007, October). Adaptive comfort applications in Australia and impacts on building energy consumption. In Proceedings of the sixth international conference on indoor air quality, ventilation and energy conservation in buildings: sustainable built environment, Sendai, Japan.
21. Delta Electronics Foundation (2011). Who has carbon tax? Who has carbon trading? Retrieved from http://www.delta-foundation.org.tw/lowestc/
factsheet001.pdf
22. Department of Statistics (2013). 2013 annual average salary. Retrieved from http://www.stat.gov.tw/public/Attachment/42251642543HCLHD3O.pdf
23. D&R International, Ltd. (2011). 2011 Buildings energy data book. Retrieved from http://buildingsdatabook.eren.doe.gov/docs/DataBooks/2011_BEDB.pdf
24. Derek, T., & Clements-Croome, J. (1997). What do we mean by intelligent buildings? Automation in Construction, 6(5), 395-400.
25. Diercks, R., Arndt, J. D., Freyer, S., Geier, R., Machhammer, O., Schwartze, J., & Volland, M. (2008). Raw material changes in the chemical industry. Chemical Engineering & Technology, 31(5), 631-637.
26. Doukas, H., Patlitzianas, K. D., Iatropoulos, K., & Psarras, J. (2007). Intelligent building energy management system using rule sets. Building and Environment, 42(10), 3,562-3,569.
27. Doukas, H., Nychtis, C., & Psarras, J. (2009). Assessing energy-saving measures in buildings through an intelligent decision support model. Building and environment, 44(2), 290-298.
28. Ellerman, A. D., & Joskow, P. L. (2008). The European Union's emissions trading system in perspective. Arlington, VA: Pew Center on Global Climate Change.
29. Environment and Conservation Fund (2012). Energy conservation projects for non-government organizations. Retrieved from http://www.ecf.gov.hk/doc
/ecpngo_guide_e.pdf
30. Environmental Protection Administration (2009). International average water price comparison. Retrieved from http://unfccc.saveoursky.org.tw/nccs/images/
download/note/18.pdf
31. Erceg, C., Guerrieri, L., & Kamin, S. B. (2011). Did easy money in the dollar bloc fuel the oil price run-up? International Journal of Central Banking, 7(1), 131-160.
32. Estate Master (2012). Calculation guide: Estate master DF summary report performance indicators. Retrieved from http://estatemaster.com/docs/default-
source/documentation/emdf_0-00_calc-guide-summary-report.pdf?sfvrsn=2
33. Granderson, J., Piette, M. A., Ghatikar, G. & Price, p. (2009, June). Preliminary findings from an analysis of building energy information system technologies. Paper presented at National Conference on Building Commissioning, Seattle, Washington. Abstract retrieved from http://cbs.lbl.gov/sites/all/files/2224e_2.pdf
34. Granderson, J., Piette, M. A., & Ghatikar, G. (2011). Building energy information systems: user case studies. Energy Efficiency, 4(1), 17-30.
35. Guan, L. (2012). Energy use, indoor temperature and possible adaptation strategies for air-conditioned office buildings in face of global warming. Building and Environment, 55, 8-19.
36. Han, D. M. & Lim, J. H. (2010). Design and implementation of smart home energy management systems based on ZigBee. Consumer Electronics, 56(3), 1417-1425.
37. Han, J., Jeong, Y. K. & Lee, I. (2011). Efficient building energy management system based on ontology, inference rules and simulation. Paper presented at the International Conference on Intelligent Building and Management, Australia. Abstract retrieved from http://ipcsit.com/vol5/53-ICCCM2011-B0023.pdf
38. Hansen, B. (2007). Tall buildings - China to construct ‘zero-energy’ skyscraper. Civil Engineering, 77(1), 10-11.
39. Hayashi, Y., & Morisugi, H. (2000). International comparison of background concept and methodology of transportation project appraisal. Transport Policy, 7(1), 73-88.
40. Herzog, T. (2009). World greenhouse gas emissions in 2005. Retrieved from http://www.wri.org/publication/navigating-the-numbers.
41. Hofstrand, D. (2013). Capital budgeting basics. Retrieved from https://www.
extension.iastate.edu/AgDM/wholefarm/pdf/c5-240.pdf
42. Hong, T., Koo, C., & Park, S. (2012). A decision support model for improving a multi-family housing complex based on CO2 emission from gas energy consumption. Building and Environment. 52, 142-151.
43. Huang, C. R. (2012). Analysis of international carbon trading system. Retrieved from http://km.twenergy.org.tw/
44. Huang, L. C., Chang, H. C., Chen, C. C. & Kuo, C. C. (2011). A ZigBee-based monitoring and protection system for building electrical safety. Energy and Buildings, 43(6), 1418-1426.
45. Ibn-Mohammed, T., Greenough, R., Taylor, S., Ozawa-Meida, L., & Acquaye, A. (2014). Integrating economic considerations with operational and embodied emissions into a decision support system for the optimal ranking of building retrofit options. Building and Environment, 72, 82-101.
46. Ibrahim, M. J., Sreerama Kumar, R., Abdulaziz Uthman, M., Abdel-Shafi, N. Y., & Obaid, R. R. (2013). Ethernet TCP/IP based building energy management system in a university campus in Saudi Arabia. Journal homepage: www. IJEE. IEEFoundation. org, 4(6), 1033-1040.
47. Industrial technology research institute (2013). Building energy management system (BEMS). Retrieved from http://www.ecct.org.tw/esco/dfiles/960326-esco
%E5%B0%88%E6%A5%AD%E4%BA%BA%E5%93%A1%E8%A8%93%E7%B7%B4%E8%AC%9B%E7%BE%A9/3%E9%84%AD%E8%A9%A0%E4%BB%81%E5%BB%BA%E7%AF%89%E7%89%A9%E8%83%BD%E6%BA%90%E7%AE%A1%E7%90%86%E7%B3%BB%E7%B5%B1.pdf
48. International Energy Agency (1997). Technical synthesis report: A summary of annexes 16 & 17 building energy management systems. Retrieved from http://www.ecbcs.org/docs/annex_16-17_tsr_web.pdf
49. Investopedia (2014a). Net present value - NPV. Retrieved from http://www.
investopedia.com/terms/n/npv.asp
50. Investopedia (2014b). Internal rate of return - IRR. Retrieved from http://www.
investopedia.com/terms/i/irr.asp
51. Investopedia (2014c). Benefit cost ratio - BCR. Retrieved from http://www.
investopedia.com/terms/b/bcr.asp
52. Juan, Y. K., Gao, P., & Wang, J. (2010). A hybrid decision support system for sustainable office building renovation and energy performance improvement. Energy and Buildings, 42(3), 290-297.
53. Johansson-Stenman, O. (2010). Risk aversion and expected utility of consumption over time. Games and Economic Behavior, 68(1), 208-219.
54. Kopp, R., Krupnick, A., & Toman, M. (1997). Cost-benefit analysis and regulatory reform. Human and Ecological Risk Assessment, 3(5), 787-852.
55. Kuao, U. C. (2005). Decision-making helper: The concept and practice of cost-benefit analysis. Retrieved from http://sites.duke.edu/niou/files/2011/06/
9402101.pdf
56. Ma, X., Cui, R., Sun, Y., Peng, C., & Wu, Z. (2010, August). Supervisory and energy management system of large public buildings. In Mechatronics and Automation (ICMA), 2010 International Conference on (pp. 928-933). IEEE.
57. Maghsoodlou, F., Masiello, R. and Ray, T. (2004). Energy management systems. Power and Energy Magazine, 2(5), 49-57.
58. Matsuyama, T. (2009). Creating safe, secure, and environment-friendly lifestyles through i-energy. New Breeze, 21(2), 1-8.
59. MBAlib (2013). Corporate green reputation. Retrieved from http://wiki.mbalib.com/zh-tw/%E4%BC%81%E4%B8%9A%E7%BB%BF%E8%89%B2%E5%A3%B0%E8%AA%89
60. Mihić, M. M., Petrović, D. C., Vucković, A. M., Obradović, V. L., & Đurović, D. M. (2012). Application and importance of cost-benefit analysis in energy efficiency projects implemented public buildings: The case of Serbia. Thermal Science, 16(3), 915-929.
61. Mind Tools (2014). Cost-Benefit analysis: Deciding, quantitatively, whether to go ahead. Retrieved from http://www.mindtools.com/pages/article/newTED
_08.html
62. Ministry of Economy, Trade and Industry (2013). BEMS and HEMS subsidy information. Retrieved from http://www.meti.go.jp/press/2013/09/20130913010
/20130913010-2.pdf
63. Motegi, N. & Piette, M. A. (2002, May). Web-based energy information systems for large commercial buildings. Paper presented at National Conference on Building Commissioning, Chicago, Illinois. Abstract retrieved from http://
escholarship.org/uc/item/83w21709
64. Motegi, N., Piette, M. A., Kinney, S. & Dewey, J. (2003, October). Case studies of energy information systems and related technology: Operational practices, costs, and benefits. Paper presented at the Third International Conference for Enhanced Building Operations, Berkeley, California. Abstract retrieved from http://repository.tamu.edu/bitstream/handle/1969.1/5195/ESL-IC-03-10-03.pdf?sequence=4
65. Nownews (2013). China tourists will visit in Taiwan! Taipei 101 observatory tickets quietly raised NT $50 from May. Retrieved from http://www.nownews
.com/n/2013/05/06/279464
66. Pachauri, R. K., & Reisinger, A. (2007). Climate change 2007 synthesis report. Geneva, Switzerland: The Intergovernmental Panel on Climate Change.
67. Parsons, D. J., Chatterton, J. C., Clements-Croome, D., Elmualim, A., Darby, H., Yearly, T., & Davies, G. (2011). Carbon brainprint case study: Intelligent buildings. Retrieved from https://dspace.lib.cranfield.ac.uk/bitstream/1826/7008/
1/Carbon_Brainprint-intelligent_buildings-2011.pdf
68. Point Carbon (2012). Traded volume surges as carbon prices fall in 2012. Retrieved from http://www.pointcarbon.com/news/1.2121731
69. Pun, K. F., Hui, I. K., Lau, H. C. W., Law, H. W., & Lewis, W. G., (2002) Development of an EMS planning framework for environmental management practices. International Journal of Quality and Reliability Management, 19(6), 688-709.
70. Science Development (2010). How to use carbon tax to reduce the global temperature. Retrieved from http://ejournal.stpi.narl.org.tw/NSC_INDEX/
Journal/EJ0001/9907/9907-14.pdf
71. SENDECO2 (2013). Annual CO2 trading price. Retrieved from http://www. sendeco2.com/
72. Sharples, S., Callaghan,V. & Clarke, G. (1999). A multi-agent architecture for intelligent building sensing and control. Sensor Review, 19(2), 135-140.
73. Simplestudies (2012). What is payback period? Retrieved from http://
simplestudies.com/what-is-payback-period.html
74. Sung, W. P., Tsai, T. T., Wang, H. J., & Chen, M. D. (2011). Improved energy performance of air-conditioning system using variable primary flow chilled water systems in an office building. Applied Mechanics and Materials, 71, 1973-1977.
75. Sung, W. P., Tsai, T. T., Wang, H. J., & Wu, M. J. (2011). Analysis of energy and carbon dioxide emission caused by power consumption. International Journal of Energy Research, 35(11), 1014-1022.
76. Taipei Financial Center Corp. (2012). Energy management control system (EMCS) architecture and data of Taipei 101. Unpublished raw data.
77. Taipei Financial Center Corp. (2013a). Taipei 101 building introduction. Retrieved from http://www.taipei-101.com.tw/en/Tower/buildind_01-1.html
78. Taipei Financial Center Corp. (2013b). Taipei 101 building layout. Retrieved from http://www.taipei-101.com.tw/en/Tower/buildind_03-1.html
79. Taipei Financial Center Corp. (2013c). Taipei 101 Green On project. Retrieved from http://www.taipei101greenon.com.tw/
80. Taipei Water Corporation (2013). CO2 emission which produced by per water unit. Retrieved from http://www.water.gov.tw/04service/ser_c_main7.asp
81. Taiwan Environmental Information Center (2009). Kaohsiung plans levy a carbon tax. Retrieved from http://e-info.org.tw/node/41567
82. Taiwan Forestry Research Institute (2013). Global forest carbon market present situation and trend. Retrieved from http://www2.tfri.gov.tw/main/download
.aspx?dlfn=%E6%9E%97%E6%A5%AD%E8%AB%96%E5%A3%8702.pdf
83. Taiwan Green Productivity Foundation (2008). Building energy and management system energy saving manual. Retrieved from http://www.ecct.
org.tw/print/files/971230%E5%BB%BA%E7%AF%89%E8%83%BD%E6%BA%90%E7%AE%A1%E7%90%86(BEMS)%E7%AF%80%E8%83%BD%E6%89%8B%E5%86%8A.pdf
84. Taiwan Power Company (2007). Electricity emission factor report. Retrieved from http://www.taipower.com.tw/quickLink/co2.htm.
85. Taiwan Power Company (2009). Electricity emission factor report. Retrieved from http://www. taipower.com.tw/TaipowerWeb//upload/files/1/d99051202.pdf
86. Taiwan Power Company (2012). International average electricity price comparison. Retrieved from http://www.taipower.com.tw/UpFile/_userfiles/file/
%E5%90%84%E5%9C%8B%E9%9B%BB%E5%83%B9%E6%AF%94%E8%BC%83.pdf
87. Taiwan Power Company (2013). Expand electricity discount for energy saving incentives. Retrieved from http://www.taipower.com.tw/content/q_service/
images/main_3_6_8.pdf
88. The Energy Conservation Center (2013). Database of whereabouts information on industrial energy-saving equipment. Retrieved from http://www.eccj.or.jp
/equip-e/index.php
89. The Skyscraper Center (2011). Tall buildings in numbers. Retrieved from http://www.ctbuh.org/LinkClick.aspx?fileticket=deFaAW6qCec%3d&tabid=1108&language=en-US
90. Ueno, T., Sano, F., Saeki, O. & Tsuji, K. (2006). Effectiveness of an energy-consumption information system on energy savings in residential houses based on monitored data. Applied Energy, 83(2), 166-183.
91. United Nations (1998). Kyoto protocol to the United Nations framework convention on climate change. Retrieved from http://unfccc.int/resource/docs/
convkp/kpeng.pdf
92. United Nations (2012). Establishment of an Ad Hoc working group on the durban platform for enhanced action. Retrieved from http://unfccc.int/files/
meetings/durban_nov_2011/decisions/application/pdf/cop17_durbanplatform.pdf
93. United Nations (2013). The mechanisms under the Kyoto Protocol: Emissions trading, the clean development mechanism and joint implementation. Retrieved from https://unfccc.int/kyoto_protocol/mechanisms/items/1673.php
94. United Nations Economic and Social Commission for Asia and the Pacific (2012). Low carbon green growth roadmap for Asia and the Pacific: Case study - Japan’s housing eco-point system. Retrieved from http://www.
unescap.org/sites/default/files/28.%20CS-Japan-housing-eco-point-system.pdf
95. United Technologies Corporation (2011). The global market opportunity. Retrieved from http://2011ar.utc.com/pdfs/The%20Global 20Market%20
Opportunity.pdf
96. U.S. Green Building Council (2009). LEED 2009 for existing buildings operations and maintenance rating system. Retrieved from https://new.usgbc.org
/leed
97. Wang, S., & Xie, J. (2002). Integrating building management system and facilities management on the Internet. Automation in Construction, 11(6), 707-715.
98. Wang, S., Xu, Z., Cao, J. & Zhang, J. (2007). A middleware for web service-enabled integration and interoperation of intelligent building systems. Automation in Construction, 16(1), 112-121.
99. Watts, S., Kalita, N., & Maclean, M. (2007). The economics of super-tall towers. Structural Design of Tall and Special Buildings, 16(4), 457-470.
100. Wu, H. J., Yuan, Z. W., Zhang, L., & Bi, J. (2012). Life cycle energy consumption and CO2 emission of an office building in China. The International Journal of Life Cycle Assessment, 17(2), 105-118.
101. Yang, W. C. (2011). Taipei 101-The tallest building in the world. Retrieved from http://www.tgpf.org.tw/8d15/event/files/20110908/2.%E7%99%BE%E8%B2%A8%E6%A5%AD%E7%AF%80%E8%83%BD%E6%87%89%E7%94%A8%E6%8A%80%E8%A1%93%E8%88%87%E6%A1%88%E4%BE%8B%E7%B0%A1%E4%BB%8B.pdf
102. Zhao, P., Suryanarayanan, S., & Simões, M. G. (2013). An energy management system for building structures using a multi-agent decision-making control methodology. Industry Applications, IEEE Transactions on, 49(1), 322-330.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw