進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-3007201317215600
論文名稱(中文) 二氧化鈦表面氧空位對細胞之影響研究
論文名稱(英文) The Oxygen Vacancies of Titanium Dioxide on the Cell Responses
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 楊寬寧
研究生(英文) Connie Yang
學號 P86004051
學位類別 碩士
語文別 英文
論文頁數 87頁
口試委員 指導教授-李澤民
共同指導教授-張志涵
口試委員-林睿哲
口試委員-陳炳宏
口試委員-蔡偉博
中文關鍵字 二氧化鈦  奈米管陣列  光觸媒  氧空位 
英文關鍵字 Titanium dioxide  Nanotube arrays  Photocatalysis  Oxygen vacancies. 
學科別分類
中文摘要 二氧化鈦中的氧空位因為擁有了可以改變二氧化鈦本身的光學和其他物化性質的能力,而在近幾年來開始有廣泛的研究探討。當氧空位參雜在二氧化鈦中時,二氧化鈦的能隙將被縮減,進而讓只能使用紫外光觸發光觸媒的二氧化鈦擁有了可見光光觸媒的能力。可見光光觸媒已被應用在許多的領域當中,其中包括了利用可見光光觸媒作為抗菌以及毒殺癌細胞的手段。除此之外,當二氧化鈦表面具有氧空位缺陷時,氧空位將會有助於二氧化鈦吸附空氣中的水或者是氧氣,造成二氧化鈦表面帶有較多的OH基而擁有較高的親水性。而在其他文獻中也直接指出,氧空位此種表面缺陷可吸附較多的有機離子或者是蛋白質,創造出一個細胞較利於生長的表面。即便已經有相當多的文獻探討細胞與氧空位的關係,但是一個較為全面的研究卻是尚未提出。本實驗假設了可見光的照射與否是二氧化鈦表面氧空位對於細胞最主要的影響因子,以自製的LED光照系統在細胞培養於基材上時作為光線來源,並且調節不同的照射參數。由實驗結果可以知道,細胞生長於基材上的表現可以藉由基材上的氧空位濃度調節以及可見光的照射參數改變(改變照射光強度或是照射波長)來進行調控。這個發現讓吾人可以藉由不同光照的調節,使得培養於具有氧空位的二氧化鈦基材上的細胞走向不同的命運,對於之後二氧化鈦作為生醫材料的應用上,將可以做為一個有用的參考。
英文摘要 Oxygen vacancy in titanium dioxide has been studied in numerous studies, due to the effects on the optical and electro properties of TiO2. It is shown that oxygen vacancy can narrow the band gap of TiO2 by acting as a dopant, and enables visible light to trigger the photocatalysis effects. It is overt that cells can easily be killed by the effect of TiO2 photocatalyst reaction. In the other hand, oxygen vacancy is one kind of surface defects of TiO2, it is reported that the defect sites on the surface have the ability to adsorb organic molecules, protein or water molecules, leading a cell-favoring surface. Thus, the actual interactions between TiO2 with oxygen vacancy and cells remain unknown. In this study, we presumed that visible light irradiated is the main mechanism to adjust cell performance on the TiO2 substrate with oxygen vacancies. The white LEDs were used as light source, giving different conditions when cell is cultured on the specimens. This study successfully demonstrates that the effects of oxygen vacancies on cells can adjust by varying the oxygen vacancy density or the light source, including changing the intensities and wavelength of light. It is of interest to apply these results to other TiO2 applications to directs cell fate.
論文目次 ABSTRACT i
中文摘要 ii
誌謝 iii
Table of Contents iv
List of Tables vii
List of Figures viii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Titanium and Titanium dioxide 2
1.3 Photocatalytic and photocatalytic application 3
1.4 Visible light activity photocatalytic 6
1.5 Oxygen vacancies 9
1.6 Titanium nanotube arrays 11
1.7 Motivation and objective 13
Chapter 2 Materials and Methods 15
2.1 Experimental procedure 15
2.2 Specimen Preparation 15
2.2.1 Titanium Substrates 15
2.2.2 Anodization 16
2.2.3 Heat treatments 16
2.3 Specimen surface characteristic analysis 17
2.3.1 Surface morphology 17
2.3.2 Surface phase composition analysis 17
2.3.3 Surface chemical composition analysis 17
2.3.4 Photoluminescence (PL) spectra 17
2.3.5 Photocatalyst activity measurements 18
2.4 In vitro cell tests 18
2.4.1 Samples sterilization 18
2.4.2 Cell culture 18
2.4.3 LEDs arrays light devices 19
2.4.4 Cell morphology 19
2.4.5 Cell morphology (Immunofluorescence staining) 21
2.4.6 Cell proliferation (MTT assay) 23
2.4.7 Protein absorption (BCA assays) 25
2.4.8 Statistical analysis 26
Chapter 3 Results 27
3.1 Specimen surface characteristic analysis 27
3.1.1 Surface morphology 27
3.1.2 Surface phase composition analysis 27
3.1.3 Surface chemical composition analysis 28
3.1.4 Photoluminescence spectra 29
3.1.5 Photocatalyst activity measurements 30
3.2 In vitro test 31
3.2.1 Cell morphology 31
3.2.2 Cell proliferation-Light/Dark 32
3.2.3 Cell proliferation-with different light intensities 33
3.2.4 Cell proliferation-Light wavelength 34
3.2.5 Protein absorption 35
Chapter 4 Discussion 36
Chapter 5 Conclusions 42
REFERENCE 45
參考文獻 [1] "Titanium". Encyclopædia Britannica. 2006.
[2] Emsley 2001, p. 453.
[3] J.T. Mayer, U. Diebold, T.E. Madey, E. Garfunkel. Titanium and reduced titania overlayers on titanium dioxide(110). Journal of Electron Spectroscopy and Related Phenomena 73 (1995) 1-11.
[4] Yoon-Chae Nah, Indhumati Paramasivam, Patrik Schmuki. Doped TiO2 and TiO2 Nanotubes: Synthesis and Applications. Chem. Phys Chem. 2010, 11, 2698 – 2713.
[5] Ying-Chin Lim, Zulkarnain Zainal, Wee-Tee Tan, Mohd Zobir Hussein. Anodization Parameters Influencing the Growth of Titania Nanotubes and Their Photoelectrochemical Response. International Journal of Photoenergy Volume 2012.
[6] A. Markowska-Szczupak, K. Ulfig, A.W. Morawski. The application of titanium dioxide for deactivation of bioparticulates: An overview. Catalysis Today 169 (2011) 249–257
[7] Xiaobo Chen, Samuel S. Mao. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev. 2007, 107, 2891-2959
[8] Andrew G. Thomas, Karen L. Syres. Adsorption of organic molecules on rutile TiO2 and anatase TiO2 single crystal surfaces. Chem. Soc. Rev., 2012, 41, 4207–4217.
[9] P.I. Brånemark, R. Adell, T. Albrektsson, U. Lekholm, S. Lundkvist, B. Rockler. Osseointegrated titanium fixtures in the treatment of edentulousness. Biomaterials 1983.
[10] P.I. Brånemark, R. Adell, T. Albrektsson, U. Lekholm, J. Lindström, B. Rockler. An experimental and clinical study of osseointegrated implants penetrating the nasal cavity and maxillary sinus. J Oral Maxillofac Surg 24 497-505. 1984
[11] F. Guillemot, M. C. Port´e, C. Labrug`ere, Ch. Baquey. Ti4+ to Ti3+ Conversion of TiO2 Uppermost Layer by Low-Temperature Vacuum Annealing: Interest for Titanium Biomedical Applications. Journal of Colloid and Interface Science 255, 75–78 (2002)
[12] Akira Fujishima, Kenichi Honda. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 238, 37 - 38 (1972).
[13] Ulrike Diebold. The surface science of titanium dioxide. Surface Science Report 48 (2003) 53-229.
[14] Miguel Pelaez, Nicholas T. Nolan, Suresh C. Pillai, Michael K. Seery, Polycarpos Falaras, Athanassios G. Kontos, Patrick S.M. Dunlop, Jeremy W.J. Hamilton, J.Anthony Byrne, Kevin O’Shea, Mohammad H. Entezari, Dionysios D. Dionysiou. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental 125 (2012) 331– 349
[15] A. FUJISHIMA, R. X. CAI, J. OTSUKI, K. HASHIMOTO, K. ITOH, T. YAMASHITA, Y. KUBOTA. BIOCHEMICAL APPLICATION OF PHOTOELECTROCHEMISTRY: PHOTOKILLING OF MALIGNANT CELLS WITH TiO2 POWDER. Electrochemica Acta, Vol.38, No.1,pp. 153-157, 1993.
[16] Klaus P. Kuhn, Iris F. Chaberny, Karl Massholder, Manfred Stickler, Volker W. Benz, Hans-Gunther Sonntag, Lothar Erdinger. Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light. Chemosphere 53 (2003) 71–77
[17] Kristen Sanders, Laura L. Degn, William R. Mundy, Robert M. Zucker, Kevin Dreher, Baozhong Zhao, Joan E. Roberts, William K. Boyes. In Vitro Phototoxicity and Hazard Identification of Nano-scale Titanium Dioxide. Toxicology and Applied Pharmacology 258 (2012) 226–236.
[18] Tadashi Matsunaga, Ryozo Tomoda, Toshiaki Nakajima, Hitoshi Wake. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol. Lett. 29 (1985) 211–214.
[19] Byunghoon Kim, Dohwan Kim, Donglyun Cho, Sungyong Cho. Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere 52 (2003) 277–281.
[20] Tzu-Ying Lai, Wen-Chien Lee. Killing of cancer cell line by photoexcitation of folic acid-modified titanium dioxide nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry 204 (2009) 148–153.
[21] Kayano Sunada, Toshiya Watanabe, Kazuhito Hashimoto. Studies on photokilling of bacteria on TiO2 thin film. Journal of Photochemistry and Photobiology A: Chemistry 156 (2003) 227–233.
[22] Zhen Hu, Yudong Huang, Shaofan Sun, Wenchao Guan, Yuhuan Yao, Peiyi Tang, Cuiyun Li. Visible light driven photodynamic anticancer activity of graphene oxide/TiO2 hybrid. Carbon 50 (2012) 994-1004.
[23] Cai, R., K. Hashimoto, K. Itoh, Y. Kubota, A. Fujishima. Photokilling
of malignant cells with ultrafine TiO2 powder. Bull. Chem. Soc. Jpn.(1991) 64:1268–1273.
[24] Matsunaga, T., R. Tomada, T. Nakajima, H. Wake. Photochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol. Lett. (1985) 29:211–214.
[25] Saito, T., T. Iwase, T. Morioka. Mode of photocatalytic bactericidal action of powdered semiconductor TiO2 on mutans streptococci. J. Photochem. Photobiol. B Biol. (1992)14:369–379.
[26] Sakai, H., R. Cai, K. Hashimoto, T. Kato, K. Hashimoto, A. Fujishima, Y. Kubota, E. Ito, T. Yoshioka. Photocatalytic effect of TiO2 particles on tumor cells—study on mechanism of cell death by measuring concentration of intracellular calcium ion. Photomed. Photobiol. (1990)12:135–138.
[27] Sakai, H., E. Ito, R.-X. Cai, T. Yoshioka, K. Hashimoto, A. Fujishima. Intracellular Ca12 concentration change of T24 cell under irradiation in the presence of TiO2 ultrafine particles. Biochim. Biophys. Acta (1994) 1201: 259–265
[28] Sunada, K., Y. Kikuchi, K. Hashimoto, A. Fujishima. Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environ. Sci. Technol. (1998) 32:726–728.
[29] Daniel M. Blake, Pin-Ching Maness, Zheng Huang, Edward J. Wolfrum, Jie Huang. Bactericidal Activity of Photocatalytic TiO2 Reaction: toward an Understanding of Its Killing Mechanism. applied and environmental microbiology, (1999). p. 4094–4098.
[30] Daniel M. Blake, Pin-Ching Maness, Zheng Huang, Edward J. Wolfrum, Jie Huang. application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells. Separation and Purification Methods Volume 28(1) 1999, pp. 1-50
[31] Zheng Huang, Pin-Ching Maness, Daniel M. Blake, Edward J. Wolfrum, Sharon L. Smolinski. Bactericidal mode of titanium dioxide photocatalysis. J. Photochem. Photobiol. A. Chem. (1999).
[32] Omatoyo K. Dalrymple, Elias Stefanakos, Maya A. Trotz, D. Yogi Goswami. A review of the mechanisms and modeling of photocatalytic disinfection. Applied Catalysis B: Environmental 98 (2010) 27–38.
[33] Roger I. Bickley, Teresita Gonzalez-Carreno, John S. Lees, Leonardo Palmisano, Richard J. D. Tilley. A Structural Investigation of Titanium Dioxide Photocatalysts. Journal of solid state chemistry 92, 178-190 (1991)
[34] J. G. Mavroides, D. I. Tchernev, J. A. Kafalas, D. F. Kolesar. Photoelectrolysis of water in cell with TiO2 anodes. Mater. Res. Bull., 10, 1023-1030 (1975).
[35] H.Paul Maruska, Amal K. Ghosh. Photocatalytic decomposition of water at semiconductor electrodes. Sol. Energy 20, 443 (1978).
[36] 劉慈薇. 二氧化鈦光電極之製備及其在光電化學法產氫之應用. 國立成功大學, 化學工程研究所, 碩士論文.
[37] A. Hagfeldt, M. Gratzel. Light-induced redox reactions in nanocrystalline systems. Chem. Rev., 95, 49-68(1995).
[38] H. Gerischer, A. Heller. Photocatalytic oxidation of organic molecules at TiO2 particles by sunlight in aerated water. J. Electrochem. Soc., 139,113-118(1992).
[39] Yanyuan Wen, Hanming Ding, Yongkui Shan. Preparation and visible light photocatalytic activity of Ag/TiO2/grapheme nanocomposite. Nanoscale, 2011, 3, 4411
[40] Ming-Show Wong, Wen-Chen Chu, Der-Shan Sun, Hsuan-Shun Huang, Jiann-Hwa Chen, Pei-Jane Tsai, Nien-Tsung Lin, Mei-Shiuan Yu, Shang-Feng Hsu, Shih-Lien Wang, Hsin-Hou Chang. Visible-Light-Induced Bactericidal Activity of a Nitrogen-Doped Titanium Photocatalyst against Human Pathogens. Applied and environmental microbiology. (2006), p. 6111–6116
[41] J. M. Macak , M. Zlamal , J. Krysa , P. Schmuki. Self-Organized TiO2 Nanotube Layers as Highly Efficient Photocatalysts. Small (2007), 3 , 300
[42] A.G. Kontos, A. Katsanaki, T. Maggos, V. Likodimos, A. Ghicov, D. Kim, J. Kunze, C. Vasilakos, P. Schmuki, P. Falaras. Photocatalytic degradation of gas pollutants on self-assembled titania nanotubes. Chemical Physics Letters 490 (2010) 58–62.
[43] Feng Chen, Weiwei Zou, Wenwu Qu, Jinlong Zhang. Photocatalytic performance of a visible light TiO2 photocatalyst prepared by a surface chemical modification process. Catalysis Communications 10 (2009) 1510–1513.
[44] Kazuhito Hashimoto, Hiroshi Irie, Akira Fujishima. TiO2 Photocatalysis: A Historical Overview and Future Prospects. Japanese Journal of Applied Physics Vol. 44, No. 12 (2005) pp. 8269–8285
[45] Sitao Yang, Weiping Tang, Yoshie Ishikawa, Qi Feng. Synthesis of titanium dioxide with oxygen vacancy and its visible-light sensitive photocatalytic activity. Materials Research Bulletin 46 (2011) 531–537.
[46] Mingyang Xing, Wenzhang Fang, Muhammad Nasir, Yunfei Ma, Jinlong Zhang, Masakazu Anpo. Self-doped Ti3+-enhanced TiO2 nanoparticles with a high-performance photocatalysis. Journal of Catalysis 297 (2013) 236–243.
[47] Fan Zuo, Le Wang, Tao Wu, Zhenyu Zhang, Dan Borchardt, and Pingyun Feng. Self-Doped Ti3+ Enhanced Photocatalyst for Hydrogen Production under Visible Light. J. am. chem. soc. 9 Vol. 132, No. 34, 2010.
[48] Zheshuai Lin, Alexander Orlov, Richard M. Lambert, Michael C. Payne. New Insights into the Origin of Visible Light Photocatalytic Activity of Nitrogen-Doped andOxygen-Deficient Anatase TiO2. J. Phys. Chem. B 2005, 109, 20948-20952.
[49] Xiaoyang Pan, Min-Quan Yang, Xianzhi Fu, Nan Zhang and Yi-Jun Xu. Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale, 2013, 5, 3601.
[50] Xin Liu, Shanmin Gao, Hui Xu, Zaizhu Lou, Wenjun Wang, Baibiao huang, Ying Dai. Green Synthetic Approach for Ti3+ Self-doped TiO2-x Nanoparticles with Efficient Visible Light Photocatalytic Activity. Nanoscale, 2013,5, 1870-1875.
[51] Feila Liu, Lu Lu, Peng Xiao, Huichao He, Lei Qiao, Yunhuai Zhang. Effect of Oxygen Vacancies on Photocatalytic Efficiency of TiO2 Nanotubes Aggregation. Bull. Korean Chem. Soc. 2012, Vol. 33, No. 7 2255.
[52] Yongqing Cai, Zhaoqiang Bai, Sandhya Chintalapati, Qingfeng Zeng, Yuan Ping Feng. Transition metal atoms pathways on rutile TiO2 (110) surface: Distribution of Ti3+ states and evidence of enhanced peripheral charge accumulation. The Journal of Chemical Physics 138, 154711 (2013).
[53] I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, K. Takeuchi. Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal. J. Mol. Catal.A 161 (2000) 205.
[54] Liang-Bin Xiong, Jia-Lin Li, Bo Yang, Ying Yu. Ti3+ in the Surface of Titanium Dioxide: Generation, Properties and Photocatalytic Application. Journal of Nanomaterials (2012).
[55] T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell. Defect chemistry and semiconducting properties of titanium dioxide: II. Defect diagrams. Journal of Physics and Chemistry of Solids 64 (2003) 1057–1067.
[56] Guangquan Lu, Amy Linsebigler, John T. Yates, Jr. Ti3+ Defect Sites on TiO2 (110): Production and Chemical Detection of Active Sites. J. Phys. Chem. 1994, 98, 11733-11738
[57] Cristiana Di Valentin, Gianfranco Pacchioni, Annabella Selloni. Reduced and n-Type Doped TiO2: Nature of Ti3+ Species. J. Phys. Chem. C 2009, 113, 20543–20552.
[58] Michael A. Henderson, William S. Epling, Craig L. Perkins, Charles H. F. Peden. Interaction of Molecular Oxygen with the Vacuum-Annealed TiO2(110) Surface: Molecular and Dissociative Channels. J. Phys. Chem. B 1999, 103, 5328-5337
[59] J.M. Pan, B. L. Maschhoff, U. Diebold, T. E. Madey. Interaction of water, oxygen, and hydrogen with TiO2(110) surfaces having different defect densities. J. Vac. Sci. Technol. (1992) A, Vol. 10, No.4.
[60] Indhumati Paramasivam , Himendra Jha , Ning Liu , Patrik Schmuki. A Review of Photocatalysis using Self-organized TiO2 Nanotubes and Other Ordered Oxide Nanostructures. Small 2012, 8, No. 20, 3073–3103
[61] Poulomi Roy, Steffen Berger, Patrik Schmuki. TiO2 Nanotubes: Synthesis and Applications. Angew. Chem. Int. Ed. 2011, 50, 2904 – 2939
[62] Seunghan Oh, Chiara Daraio, Li-Han Chen, Thomas R. Pisanic, Rita R. Fin, Sungho Jin. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J. Biomed. Mater. Res. A , 2006. 78 (1): p. 97–103.
[63] WQ Yu, YL Zhang, XQ Jiang, FQ Zhang. In vitro behavior of MC3T3-E1 preosteoblast with different annealing temperature titania nanotubes. Oral Diseases (2010) 16, 624–630.
[64] Karla S. Brammer, Seunghan Oh, John O. Gallagher, Sungho Jin. Enhanced Cellular Mobility Guided by TiO2 Nanotube Surfaces. Nano Lett., Vol. 8, No. 3, 2008.
[65] Ketul C. Popat, Lara Leoni, Craig A. Grimes, Tejal A. Desai. Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 28 (2007) 3188–3197.
[66] Lily Peng, Matthew L. Eltgroth, Thomas J. LaTempa, Craig A. Grimes, Tejal A. Desai. The effect of TiO2 nanotubes on endothelial function and smooth muscle proliferation. Biomaterials 30 (2009) 1268–1272.
[67] K. Eufinger, D. Poelman, H. Poelman, R. De Gryse, G.B. Marin. Photocatalytic activity of dc magnetron sputter deposited amorphous TiO2 thin films. Applied Surface Science (2007), vol.254, p. 148-152.
[68] Neupane MP, Park IS, Lee MH, Bae TS, Watari F. Influence of heat treatment on morphological changes of nano-structured titanium oxide formed by anodic oxidation of titanium in acidic fluoride solution. Bio-Medical Materials and Engineering 19 (2009) 77–83.
[69] X. L. Wu, G. G. Siu, C. L. Fu, H. C. Ong. Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films. Appl. Phys. Lett. 78, 2285 (2001).
[70] Yow-Jon Lin, Chia-Lung Tsai, Yang-Ming Lu, Chia-Jyi Liu. Optical and electrical properties of undoped ZnO films. J. Appl. Phys. 99, 093501 (2006).
[71] Yang Yang, Xiaohui Wang, Changku Sun, Longtu Li. Electron Field Emission and Photoluminescence of Anatase Nanotube Arrays. J. Am. Ceram. Soc., 91 [12] 4109–4111 (2008)
[72] 楊冠虹, 探討二氧化鈦奈米管結構與結晶度對細胞反應之影響. 國立成功大學, 醫學工程研究所, 碩士論文.
[73] S. Ghosh, Gobinda Gopal Khan, K. Mandal, Anirban Samanta, P. M. G. Nambissan. Evolution of Vacancy-Type Defects, Phase Transition, and Intrinsic Ferromagnetism during Annealing of Nanocrystalline TiO2 Studied by Positron Annihilation Spectroscopy. J. Phys. Chem. C (2013), 117, 8458−8467
[74] Yunhuai Zhang, Peng Xiao, Xiaoyuan Zhou, Dawei Liu, Betzaida Batalla Garcia, Guozhong Cao. Carbon monoxide annealed TiO2 nanotube array electrodes for efficient biosensor applications. J. Mater. Chem., (2009) 19, 948–953, 949
[75] C.H. Chen, J. Shieh, S.M. Hsieh, C.L. Kuo, H.Y. Liao. Architecture, optical absorption, and photocurrent response of oxygen-deficient mixed-phase titania nanostructures. Acta Materialia 60 (2012) 6429–6439.
[76] Yang Yang, Xiaohui Wang, Changku Sun, Longtu Li. Photoluminescence of ZnO nanorod-TiO2 nanotube hybrid arrays produced by electrodeposition. J. Appl. Phys. 105, 094304 (2009).
[77] Bengt Kasemo. Biological surface science. Surface Science 500 (2002) 656–677.
[78] Barbara J. Jones, Matthew J. Vergne, David M. Bunk, Laurie E. Locascio, Mark A. Hayes. Cleavage of Peptides and Proteins UsingLight-Generated Radicals from Titanium Dioxide. Anal. Chem. 2007, 79, 1327-1332
[79] Peng Xiao, Yunhuai Zhang, Guozhong Cao. Effect of surface defects on biosensing properties of TiO2 nanotube arrays. Sensors and Actuators B 155 (2011) 159–164
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw