進階搜尋


下載電子全文  
系統識別號 U0026-3007201217112300
論文名稱(中文) 四行程噴射引擎新機車使用酒精汽油於四種行車型態之氣態污染物排放特徵研究
論文名稱(英文) Gaseous Air Pollutant Emission From Fuel Injection Motorcycle By Using Ethanol-Blend Gasoline Under Different Driving Cycle
校院名稱 成功大學
系所名稱(中) 環境工程學系碩博士班
系所名稱(英) Department of Environmental Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 柯雅琍
研究生(英文) Ya-Li Ke
學號 P56991155
學位類別 碩士
語文別 中文
論文頁數 222頁
口試委員 指導教授-蔡俊鴻
口試委員-江鴻龍
口試委員-劉保文
口試委員-姚永真
中文關鍵字 四行程噴射引擎新機車  行車型態  酒精汽油  空氣污染物  有機性有害污染物  臭氧生成潛勢 
英文關鍵字 fuel-injection engine motorcycle  driving cycle  ethanol-blended gasoline  gaseous pollutants  ozone-forming potential  organic air toxics 
學科別分類
中文摘要 本研究探討四行程噴射引擎新機車使用不同酒精比例汽油與95市售汽油為燃料,於四種行車型態測試所致引擎尾氣排放污染物於無觸媒排氣管條件之差異。解析污染物包括:法定污染物、揮發性有機污染物、醛酮類化合物及有機性有害污染物(苯、甲苯、乙苯、二甲苯、甲醛及乙醛);此外,並探討臭氧生成潛勢(OFP)、法定污染物等效減量值(EEA)。測試油品分別為酒精含量15 %(E15)、30 %(E30)及95市售汽油。測試機車選用同廠牌同款之一部新車,行車型態為ECE type(現行法規規定行車型態)、WMTC type(預計民國104年生效)、TPE type及KH type(地方性行車型態),於機車動力計依國內標準測試程序進行實驗。
於四種行車型態測試研究結果顯示,四行程噴射引擎機車使用酒精汽油所致CO與THC排放係數比使用95市售汽油皆為減量,減量效果隨酒精添加比例增加而增加,最大減量分別為36%(CO)及24%(THC);酒精汽油所致NOx排放係數與95市售汽油相比則無明顯變化。探討行車型態代表性參數與法定污染物排放係數相關性分析顯示,CO與THC排放係數與平均加速度具有高度正相關,NOx則呈低中度正相關,原因應為加速時為避免爆震現象發生會有較濃油氣混合產生,進而導致CO及HC排放增加。
與95市售油比較,四行程噴射引擎機車使用不同酒精比例汽油為燃料,於四種行車型態之Total VOCs排放係數皆隨酒精添加比例增加而降低,烷類、烯類及芳香烴排放係數亦呈降低趨勢;醛酮化合物排放係數隨酒精比例增加而增加,顯示醇類於引擎內燃燒易生成甲醛及乙醛。。解析排放係數相關性顯示,揮發性有機物及醛酮化合物排放係數對平均加速度皆具有中高度正相關性。有機性有害空氣污染物分析結果顯示,四行程噴射引擎新機車使用酒精汽油為燃料對BTEX排放係數於四種行車型態皆呈減量,隨著酒精添加比例增加而增加減量效果。使用酒精汽油對甲醛及乙醛排放呈現增量,甲醛排放增加約75 %,乙醛排放增加約318 %。
臭氧生成潛勢分析結果顯示,四行程噴射引擎新機車使用酒精汽油為燃料,引擎廢氣所排放之總揮發性有機物(烷類+烯類+芳香烴)約減少18 ~ 66 %,但增加醛酮類所致臭氧生成潛勢約31 ~ 155 %。解析行車型態代表性參數相關性顯示,揮發性有機物及醛酮化合物臭氧生成潛勢與平均加速度皆具有中高度正相關性。
英文摘要 This study investigated the effects of ethanol-blended gasoline, with various oxygen contents, on air pollutant emissions from four-stroke fuel-injection motorcycle without catalyst under different driving cycle. Three test fuels which contains 15% (E15) and 30% (E30) of ethanol by volume and with the fuel oxygen content of 5.35, 7.4 and 10.06 by weight were applied to power the test motorcycle on a chassis dynamometer, respectively. Ethanol was used as oxygenated additive in test fuels. The commercial unleaded gasoline was used as reference fuel in which methyl ter-butyl ether (MTBE) was used as the additive with oxygen content 2.01% (by weight). The target pollutants investigated in this study including CO, NOx, THC, volatile organic compounds(VOCs), carbonyls, and six species of organic air toxics (benzene, toluene, ethylbenzene, xylene, formaldehyde, and acetaldehyde). A new motorcycle, with engine displacement of 125 cm3, was tested on a chassis dynamometer by ECE test cycle. Emission factors of fuel-injection motorcycle had been derived by conducting the dynamometer test with two localized driving cycles (Taipei City cycle and Kaohsiung City cycle) and two international cycles ( ECE and WMTC).
The emission factors of TPE cycle among these four driving cycles has the largest emission. Emission factor of ECE cycle underestimates the values of two localized driving cycles (Taipei City cycle and Kaohsiung City cycle) and overestimates the factor of WMTC cycle.
The results showed that emissions of CO and THC from ethanol-gasoline blends under four driving cycles decreased with increasing oxygen content in test fuels. Particularly the E30 showed the highest emission reduction compared to the reference fuel. However the emission of NOx did not change significantly. Emissions of total VOCs, alkanes, alkenes, and aromatics groups in four driving cycles also reduced while using ethanol-gasoline blend as fuel. Emissions under four driving cycle of carbonyl group increased about 1.6 to 1.9 times from E30 as compared to RF. High emissions of acetaldehyde contributed high emission of carbonyl group while using ethanol blend. The results of air toxics emissions showed a reduction potential on benzene, toluene, ethylbenzene, and xylene, but with increasing emissions of formaldehyde and acetaldehyde.
Ozone-forming potential(OFP) of total VOC in the engine exhaust also reduced as using ethanol-gasoline blends. However, the OFP of carbonyls in engine exhaust increased about 31~155 %. Higher emissions of formaldehyde and acetaldehyde made higher OFP of emissions while using ethanol blend.
In summary, emissions of criteria air pollutants and VOCs may decrease while using ethanol-gasoline blends as fuel to power the motorcycle. E30 showed a higher emission reduction potential. However, E30 also had the higher emission of formaldehyde and acetaldehyde.
論文目次 目錄
中文摘要 I
ABSTRACT III
誌謝 V
目錄 VII
表目錄 XI
圖目錄 XV
第一章、前言 1-1
1-1研究緣起 1-1
1-2研究目標 1-3
第二章、文獻回顧 2-1
2-1 移動車輛燃料組成特性與管制標準 2-1
2-1-1 汽油油品成分組成 2-1
2-1-2 國外油品發展趨勢 2-3
2-1-3 國內油品政策及發展 2-6
2-2 酒精汽油成分特徵及對於車輛使用燃油之應用 2-11
2-2-1 酒精汽油之組成及特性 2-11
2-2-2 國外酒精汽油發展 2-12
2-2-3 台灣地區之酒精汽油政策發展 2-16
2-3影響機車排放廢氣之因素 2-18
2-3-1 供油系統 2-18
2-3-2 引擎型態(二/四行程) 2-19
2-3-3 引擎累積行駛里程 2-20
2-3-4 車輛啟動方式(冷/熱啟動) 2-21
2-3-5 觸媒轉化器 2-22
2-4 行車型態對移動源污染物排放之關聯性 2-24
2-4-1 行車型態定義 2-24
2-4-2 行車型態對於法定污染物排放影響 2-30
2-4-3 行車型態對於氣態揮發性有機物排放影響 2-31
2-5 酒精汽油成分特徵對車輛尾氣氣態污染物影響 2-35
2-5-1 酒精汽油對氣態污染物排放影響 2-35
2-5-2 揮發性有機物在光化反應重要性 2-42
2-5-3車輛對光化反應之影響 2-43
第三章、研究方法 3-1
3-1 研究架構 3-1
3-2 篩選測試車與油品摻配設計 3-4
3-2-1 篩選測試車 3-4
3-2-2 油品成分摻配設計 3-4
3-3 車體動力計操作與排氣採樣程序 3-8
3-3-1 車體動力計簡述 3-8
3-3-2 車體動力計操作 3-8
3-3-3 測試型態之選擇 3-8
3-3-4 機車引擎尾氣之採樣程序 3-10
3-4 機車引擎尾氣之分析程序及品保品管 3-17
3-4-1 機車引擎尾氣之分析 3-17
3-4-2 實驗之品保品管 3-20
3-5 機車引擎尾氣空氣污染物計算 3-25
3-5-1 臭氧生成潛勢計算 3-25
3-5-2 油品及行車型態對機車尾氣排放影響計算 3-25
第四章、結果與討論 4-1
4-1新機車使用不同比例酒精汽油法定污染物特徵 4-1
4-1-1 法定污染物濃度(ppm)特徵 4-1
4-1-2 法定污染物單位里程排放係數(g/km)特徵 4-5
4-1-3 法定污染物單位油耗排放係數(g/L-fuel)特徵 4-11
4-1-4 綜合分析 4-17
4-1-5 油品含氧量對油耗及燃燒效率的影響 4-20
4-2新機車使用不同比例酒精汽油排放有機氣態污染物特徵 4-33
4-2-1 總揮發性有機污染物排放濃度及排放係數特徵 4-33
4-2-2 揮發性有機污染物族群排放濃度及排放係數特徵 4-36
4-2-3 醛酮化合物之排放濃度及排放係數特徵 4-41
4-2-4 有害空氣污染物排放特徵解析 4-45
4-2-5 綜合分析 4-50
4-3新機車使用不同比例酒精汽油排放VOCs及醛酮類光化反應趨勢影響 4-75
4-3-1 使用酒精汽油與95市售汽油對引擎尾氣總揮發性有機物臭氧生成潛勢 4-75
4-3-2 使用酒精汽油與95市售汽油為燃料對總揮發性有機物所致臭氧生成潛勢 4-77
4-3-3 使用酒精汽油與95市售汽油為燃料對醛酮類所致臭氧生成潛勢 4-83
4-3-4 綜合分析 4-85
4-4新機車使用酒精汽油於不同行車型態排放污染分析 4-99
4-4-1法定污染物 4-99
4-4-2 揮發性有機污染物及醛酮化合物 4-101
4-4-3 臭氧生成潛勢 4-101
4-4-4 四行程噴射引擎機車使用不同摻配比例酒精汽油對氣態污染物減量分析 4-102
4-4-5 綜合分析 4-104
第五章、結論與建議 5-1
5-1 結論 5-1
5-2 建議 5-4
參考文獻 Ref-1
英文文獻 Ref-1
中文文獻 Ref-8
附件 A-1
附件一 VOCS光化反應尺度(1/3) A-2
附件一 VOCS光化反應尺度(2/3) A-3
附件一 VOCS光化反應尺度(3/3) A-4
附件二 機車引擎尾氣空氣污染物排放係數計算 A-5

參考文獻 Al-Hasanm M., 2003. Effect of ethanol–unleaded gasoline blends on engine performance and exhaust emission. Energy Conversion and Management 44, 1547-1561.
Andrade M.F., Ynoue R.Y., Harley R., 2003. Ozone Modeling in an Ethanol-, Gasoline- and Diesel-Fuel Environment: the Metropolitan Area of São Paulo, Brazil. A&WMA’s 96th Annual Conference & Exhibition June 22-26.
AQIRP, 1997. Auto/Oil Air Quality Improvement Research Program: Program Final Report. Coordinating Research Council, Atlanta, GA.
Atkinson R., 1989. Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds. Journal of Physical and Chemical 1, 1-246.
Atkinson R., 1990. Gas-phase tropospheric chemistry organic compounds: a review. Atmospheric Environment 24 (1), 1-41.
Bell A., 2006. The Effect of Fuel Formulation on the Exhaust Emissions of Spark Ignition Engines. Doctor Dissertation, The University of Stellenbosch, South Africa.
Bielaczyc P., Merkisz J., 1997. Exhaust emission from passenger cars during engine cold start and warm-up. SAE Paper No. 970740.
Bovonsombat P., Boonchanta P., Hohn, G., 1998. Field Test of Two-Stroke Catalytic Converter in Thailand. International Fall Fuels and Lubricants Meeting and Exposition, San Francisco, California, October 19-22, 1998.
Carter W.P.L., 1994. Development of ozone reactivity scales for volatile organic compounds. Journal of Air & Waste Management Association 44, 881-899.
CONCAWE, 2001, Motor Vehicle Emission Regulations and Fuel Specifications – Part 1 Summary and annual 1999/2000 update , Report No. 1/01
Correa S.M., Martins E., Arbilla G., 2003. Formaldehyde and acetaldehyde in a high traffic street of Rio de Janeiro, Brazil. Atmospheric Environment 37:23-39.
Chan C.C., Nien C.K., Tasi C.Y., Her G.R., 1995. Comparison of tail pipe emissions from motorcycle and passenger cars. Journal of Air & Waste Management Association 45 (2), 116-124.
Chevron Products Company, 2003. Motor Gasolines Technical Review, San Ramon, USA. www.chevron.com/products/prodserv/fuels/
Derwent R.G., 1996. Photochemical ozone creation potentials for a large number of reactive hydrocarbons under european conditions. Atmospheric Environment 30, 181-199.
Dimitriades B., 1997. Photochemical smog and solvents. Metal Finishing 95 (5), 55-59
Dockery D.W., Pope C. A., Xu X., Spengler J.D., Ware J. H., Fay M.E., Ferris B.G., Speizer F. E. , 1993. An Association between Air Pollution and Mortality in Six U.S. Cities. New England Journal of Medicine 329 (24), 1753-9.
Encyclopædia Britannica, 2009. Gasoline Engine, Encyclopædia Britannica Online, Retrieved October 07, 2009, from: http://www.britannica.com/EBchecked/topic/226592/gasoline-engine
European Commission(EC), 2003. European Parliament and Council Directive 2003/17/EC
Graham L.A., Belisle S.L., Baas C.L., 2008. Emission from light duty gasoline vehicles operating on low blend ethanol gasoline and E85. Atmospheric Environment 42, 4498-4516.
Heeb N.V., Forss A.M., Weilenmann, M., 2002. Pre- and post-catalyst- fuel-, velocity- and acceleration-dependent benzene emission data of gasoline-driven EURO-2 passenger cars and light duty vehicles. Atmospheric Environment 36, 4745-4756.
He B.Q., Wang J.X., Hao J.M., Yan X.G., Xiao J.H., 2003. A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels. Atmospheric Environment 37, 949–957.
Hsieh W.D., Chen R.H., Wu T.L., Lin T.H., 2002. Engine performance and pollutant emission of an SI engine using ethanol-gasoline blended fuels. Atmospheric Environment 36, 403-410.
Jia L.W., Shen M.Q., Wang J., Lin M.Q., 2005. Influence of ethanol–gasoline blended fuel on emission characteristics from a four-stroke motorcycle engine. Journal of Hazardous Materials 123 (1-3), 29-34.
Jia L.W., Zhou W.L., Shen M.Q., Wang J., Lin, M.Q., 2006. The investigation of emission characteristics and carbon deposition over motorcycle monolith catalytic converter using different fuels. Atmospheric Environment 40, 2002-2010
J. C. Baily, B. Schmidl and M. L. Williams,1990 , Speciated hydrocarbon emissions from vehicles operated over the normal speed range on the road. Atmospheric Environment, 24A,43-52
Kirchstetter, T.W., Singer, B.C., Harley, R.A., 1996. “Impact of oxygenated gasoline use on California light-duty vehicle emissions.” Environmental Science & Technology 30, 661-670.
Knapp K.T., Stump F.D., Tejada S,B., 1998. The effect of ethanol fuel on the emissions of vehicles over a wide range of temperatures. Journal of the Air & Waste Management Association 48, 646-653.
Leong S.T., Muttamara S., Laortanakul P., 2002. Applicability of gasoline containing ethanol as Thailand’s alternative fuel to curb toxic VOC pollutants from automobile emission. Atmospheric Environment 36, 3495-3503.
MacKinven R., Hublin M., 1996. European programme on emissions, fuels and engine technologies – Objectives and design. SAE Technical Paper Series, 961065, Society of Automotive Engineers, Warrendale, PA.
Michael S. et al., 1998. Combustion of fat and vegetable oil derived fuels in diesel engines. Progress of Energy and Combustion Science 24, 125-164.
Mobile Source Air Toxics Technical Report, Grand Parkway Segments E, F-1, F-2, and G, 2006. http://www.epa.gov/otaq/toxics.htm.
Nan Z., Tan Z. C., 2004. Thermodynamic Investigation on Properties of Gasohol . Energy & Fuels 18, 1032-1037 .
Osman M. M., 1996. The effect of gasoline fuel type on Si engine nitrogen-oxides and carbon monoxide emissions under part-load operating conditions. Fuel Science & Technology International 14 (8), 1065-1095.
Pamela M. Franklin, 2001 , Evaluation of combustion by-products of MTBE as a component of reformulated gasoline. Chemosphere ,42 ,861-872.component of reformulated gasoline.
Payne-Sturges D.C., Burke T.A., Breysse P., Diener-West M., Buckley T.J., 2004. Personal exposure meets risk assessment: A comparison on measured and modeled exposures and risks in an urban community. Environmental Health Perspectives 112: 589-598.
Petir A., Montagne X., 1993. Effects of the gasoline composition on exhaust emissions of regulated and speciated pollutants. SAE Technical Paper Series, 932681, Society of Automotive Engineers, Warrendale, PA.
Perry R., and Gee, I.L., 1995. Vehicle emissions in relation to fuel composition. Science of The Total Environment 169 (1-3), 149-156.
Poulopoulos S.G., Samaras D.P., Philippopoulos C.J., 2001. Regulated and unregulated emissions from an internal combustion engine operating on ethanol-containing fuels. Atmospheric Environment 35, 4399-4406.
Rakha, H.; Ding, Y. Impact of Stops on Vehicle Fuel Consumption and Emissions, Journal of Transportation Engineering, 2003, 129 , 23.
Schifter, I., Díaz, L., Guzman, E., Lopez-Salinas, E., 2004. Fuel formulation and vehicle exhaust emissions in Mexico. Fuel 83, 2065-2074.
Schuetzle D., Siegl W.O., Jensen T.E., Dearth M.A., Kaiser E.W., Gorse R., Kreucher W., Kulik E., 1994. The relationship between gasoline composition and vehicle hydrocarbon emissions: a review of current studies and future research needs. Environmental Health Perspectives 102 (4), 3-12.
Song C.L., Zhang W.M., Pei Y.Q., Fan G.L., Xu G.P., 2006. Comparative effects of MTBE and ethanol additions into gasoline on exhaust emission. Atmospheric Environment 40, 1957-1970.
The World Bank, 2000. Improving Urban Air Quality in South Asia by Reducing Emissions from Two-Stroke Engine Vehicles. Washington D.C.
Tsai J.H., Hsu Y.C., Weng H.C., Lin W.Y., Jeng F.T., 2000. Air pollutant emission factors from new and in-use motorcycles. Atmospheric Environment 34(28), 4747-4754.
USEPA 網頁資料a, Reformulated Gasoline - Regulations &Standards, http://www.epa.gov/otaq/rfg_regs.htm.
USEPA 網頁資料b, Mobile Source Air Toxics. http://www.epa.gov/otaq/toxics.htm, EPA420-R-00-023
United States Environmental Protection Agency (USEPA), 1994. Environmental Fact Sheet- Air Toxics from Motor Vehicles. EPA400-F-92-004, Office of Transportation and Air Quality, Washington, DC.
U.S. Department of Energy, 2006. Biodiesel handling and use guideline, DOE/GO-102006-2358, Third edition.
U.S. EPA, 1999. Blue ribbon panel on oxyenates in gasoline,achieving clean air and clean water, Report 420-R-99-021, Washington, DC,September 15.
Van G.J., Shanks B., Pruszko R., Clements D., Knothe G., 2004. Biodiesel Analytical Methods August 2002-January 2004, National Renewable Energy Laboratory, Subcontractor Report NO. NREL/SR-510-36240.
Weilenmann M., Soltic P., Saxer C., Forss A.M., Heeb N., 2005. Regulated and nonregulated diesel and gasoline cold start emissions at different temperatures. Atmospheric Environment 39, 2433-2441.
William Coyle, 2007. The Future of Biofuels: A Global Perspective, AMBER WAVES 5 (5).
Wu C.W., Chen R.H., Pu J.Y., Lin T.H., 2004. Atmospheric Environment 38, 7093-7100.
Yao Y.C., Tsai J.H., Chang A.L., Jeng F.T., 2008. Effects of sulfur and aromatic contents in gasoline on motorcycle emissions. Atmospheric Environment 42, 6560-6564.
Yao Y.C., Tsai J.H., Chiang H.L.,2010. Emissions of Organic Air Toxics from a Four-Stroke Motorcycle Using Ethanol-Blended Gasoline. Environmental Engineering Science 28(2), 147-158.
Zervas E., Montagne X., Lahaye J., 2001. C-1-C-5 organic acid emissions from an SI engine: Influence of fuel and air/fuel equivalence ratio. Environmental Science & Technology 35, 2746-2751.
Zervas E., Montagne X., Lahaye J., 2002. Emission of alcohols and carbonyl compounds from a spark ignition engine: Influence of fuel and air-fuel equivalence ratio. Environmental Science & Technology 36(11), 2414-2421.
Zervas E., Montagne X., Lahaye J., 2003. Emissions of Regulated Pollutants from a Spark Ignition Engine Influence of fuel and Air/Fuel Equivalence Ratio. Environmental Science & Technology 37(14), 3232-3238.
Zervas E., Montagn X., Lahaye J., 2004. Influence of fuel and airfuel equivalence ratio on the emission of hydrocarbons from a SI engine. 1. Experimental findings. Fuel 83, 2301-2311.

中文文獻
中國石油公司,液化石油氣與各燃料之特性比較,1993
左峻德,2007,我國發展生質能源產業之可行性,農業生技產業季刊,第九期
沈淑貞,2002,台灣地區車用油特性及其對空氣污染物排放影響之研究,碩士論文,國立台灣大學環境工程研究所
吳榮華,黃乙倫,洪鼎倫,2008,ETBE之國際發展趨勢分析,石油市場雙週報,專題分析報導
洪金火,2007,機車等停對空氣污染排放之影響研究,碩士論文,朝陽科技大學環境工程與管理學系
周欣慧,2008,酒精汽油對不同里程車輛引擎排放氣態污染物影響研究,碩士論文,國立成功大學環境工程研究所
姚永真,2010,其油成分於四行程機車引擎氣態污染物排放特徵及模式研究,博士論文,國立成功大學環境工程研究所
高銘傑,2000,液化石油氣(LPG)四行程機車,碩士論文,中興大學機械工程研究所
徐武軍,2005,"石油化學工業-原料製程及市場"五南圖書出版
黃惠輝,1994,噴油與燃燒技術(一),燃燒季刊,第十期,第12-16頁
黃靖雄,2002年再版,現代低公害省油汽車排氣污染控制技術及安裝置,全華科技圖書出版
陳婉菁(Chen, W.C.), 2002, 機車使用汽醇燃料排放揮發性有機物及臭氧前驅物分析研究, 國立中興大學碩士論文
陳峰毅,2003,不同油品對機車引擎排放多環芳香烴特徵之影響,碩士論文,南台科技大學化學工程研究所
陳英鵬,2003,機車引擎電子燃油噴射控制對引擎性能及廢氣排放之影響,碩士論文,國立雲林科技大學機械工程研究所
陳厚良,2005,替代性燃油-汽醇對機車引擎排放特性之研究,碩士論文,屏東科技大學
陳彥豪、黃郁棻,2007,我國生質酒精推動與科技發展策略介紹,Sci-Tech Policy Review,科技發展政策報導-專題研究
陳憲政,2008,台灣地區公車改裝柴油/天然氣複合然料系統之效益評估,碩士論文,大葉大學機械工程研究所
翁閎政,1998,機車排氣之揮發性有機物特徵及光化反應性研究,碩士論文,國立成功大學環境工程研究所
葉惠芬,2004,冷熱啟動測試機車排放揮發性有機污特徵之差異研究,碩士論文,國立成功大學環境工程研究所
張開駿,2010,汽油含氧量及芳香烴含量對四行程機車排放氣態污染物之影響,碩士論文,國立成功大學環境工程研究所
曾益民,2006,生質酒精汽油之發展,工業技術研究院
薛天山,2009,內燃機,ISBN 978-957-21-6464-8,全華圖書股份有限公司
趙志勇、楊成宗,液化瓦斯汽車-LPG 引擎,全華科技圖書股份有限公司,1995
劉旭崇,2004,二行程、四行程化油器與四行程噴射引擎機車多環芳香烴化合物排放特徵研究之研究
劉育穎,2001,機車排放醛酮類化合物特徵與光化反應性研究,碩士論文,國立成功大學環境工程研究所
謝志強,2009,生質燃料產業發展現況與趨勢,工業技術研究院
羅永祥、魏榮昌、蕭有福,1994,不同成分LPG 為車用燃料之引擎性能及排氣污染研究,石油季刊,第30 卷第2 期
蕭瑞聖,2008,機車原理與機構(增訂本),ISBN 957-18-0114-3,財團法人徐氏文教基金會
鄭福田,2008,機車觸媒轉化器污染控制效能與耐久性評析,行政院國家科學委員會專題研究計畫, NSC97-EPA-M-002-002-
行政院經濟建設委員會,2007,http://www.cepd.gov.tw/m1.aspx?sNo=0009419
行政院環保署移動污染源管制網,http://mobile.epa.gov.tw/index.aspx
交通部統計處,http://www.motc.gov.tw/mocwebGIP/wSite/mp?mp=1
行政院環境保護署,推廣壓縮天然氣低污染大客車相關問題研究簡報,1996年十二月。

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-08-17起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-08-17起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw