進階搜尋


 
系統識別號 U0026-3007201212000600
論文名稱(中文) 以有限元素法分析骨質疏鬆胸腰椎骨折經椎體整型術或後方脊椎內固定手術後之生物力學影響
論文名稱(英文) Finite Element Analysis of Biomechanics for Osteoporotic Thoracolumbar Vertebral Fracture after Vertebroplasty or Posterior Spinal Fixation
校院名稱 成功大學
系所名稱(中) 土木工程學系碩博士班
系所名稱(英) Department of Civil Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 王喻璿
研究生(英文) Yu-Xuan Wang
電子信箱 N66994049@mail.ncku.edu.tw
學號 N66994049
學位類別 碩士
語文別 中文
論文頁數 105頁
口試委員 指導教授-胡宣德
指導教授-黃國淵
口試委員-郭青松
口試委員-朱聖浩
口試委員-藍近群
中文關鍵字 有限元素法  骨質疏鬆  胸腰椎骨折  椎弓根螺釘  生物力學 
英文關鍵字 Finite element analysis  Osteoporosis  Thoracolumbar fractures  Pedicle screws  Biomechanics 
學科別分類
中文摘要 老年人普遍有骨質疏鬆的症狀,隨著台灣邁入高齡化社會,因骨質疏鬆所造成的壓迫性骨折也有越來越多的趨勢。
現今研究中,較少探討到骨質疏鬆病患因胸腰椎骨折接受手術治療的研究,針對接受不同手術的骨質疏鬆病患,包括常見的後方脊椎內固定融合手術、骨水泥椎體灌注等手術,不同手術會使脊椎有不同的力學表現,為了有效了解骨質疏鬆病患手術後的脊椎生物力學情形,我們利用有限元素分析軟體Patran、ABAQUS,將各種控制變因進行考量,如不同材質骨水泥(PMMA、CPC)、骨水泥分布位置、有無短節鋼釘的影響,來進行生物力學研究探討。
本研究使用CT掃描的方式建立起脊椎模組,在腰椎第一節(L1)的部位,取中間二分之一的位置,將鬆質骨與皮質骨的材料參數弱化為十分之一,來模擬腰椎第一節發生骨折的情形,另外,本研究採用有螺紋的骨釘來建立Pedicle Screw系統,利用Patran有限元素分析前處理軟體在T12與L2椎節處植入骨釘,最後比較在四種動作下(前彎、後仰、側彎、扭轉)下,L1鄰近節和骨釘的應力分布情形,以及脊椎的穩定度與活動度影響。
英文摘要 The elderly generally have symptoms of osteoporosis, compression fractures caused by osteoporosis is a growing trend with Taiwan to become an aging society.
In the present study, less attention to the study of osteoporosis patients received surgical treatment for thoracolumbar fractures for osteoporosis patients receiving surgery, including Vertebroplasty or Posterior Spinal Fixation, various operation would have the spine have different mechanical performance. In order to understand the Biomechanics for Osteoporotic Thoracolumbar Vertebral Fracture after surgery, we use finite element software Patran, ABAQUS to analyze and consider different control variables such as different materials for bone cement(PMMA ,CPC), the location where bone cement inject, the effect of implanting pedicle screws or not. Use these to analyze the effects in Biomechanics.
CT scans used in this study to establish the spine module, in the lumbar part of Section 1 (L1), take the position of the middle half, weakening the material parameters of cancellous bone and cortical bone for the tenth to simulate the case of fracture of the lumbar section I. Also, we established pedicle screw system with screw thread, and we use FEM software Patran to insert pedicle screw into T12 and L2 segments.
Finally, stress in the pedicle screws , stress in the segments near L1 fracture, spinal stabilities and ROM under four motions(Flexion, Extension, Lateral Bending and Rotation) were compared.
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1有限元素法(Finite Element Method) 1
1.2骨質疏鬆(Osteoporosis) 1
1.3骨折種類定義 2
1.4 骨水泥介紹 4
1.5 研究動機和目的 5
第二章 脊椎介紹 6
2.1 脊椎結構與組成 6
2.2 脊椎組成內容 8
2.3 椎間盤 14
2.4 小面關節 17
2.5 韌帶 18
第三章 研究方法與材料 25
3.1 建立模型 25
3.1-1 樣品取得與斷層掃描 28
3.1-2 醫學影像處理 30
3.1-3 建立有限元素模型 33
3.2 建立椎足螺釘模型 39
3.3 收斂性分析 42
3.4 骨折節處理 45
3.5 邊界條件 46
3.6 材料與性質 49
第四章 結果分析 53
4.1分析方向 53
4.2 椎間相對轉角以及椎間盤代號定義 53
4.3 圖表內各種代號定義 55
4.4相對轉角 55
4.4-1 椎間盤相對轉角(IVD L1-L2) 55
4.4-2 骨折節(L1椎節)相對轉角 58
4.5 最大Von Mises應力 60
4.5-1 骨折節最大應力取點 60
4.5-2最大Von Mises應力受有無植入骨釘的影響 65
4.6 應變能密度 71
4.6-1應變能密度受材料參數的影響 71
4.6-2應變能密度受有無植入鋼釘的影響 74
4.7 PMMA骨水泥與骨釘的比較 78
第五章 結論與建議 79
5.1結論 79
5.2 建議與未來展望 80
參考文獻 81
附錄 ABAQUS input檔 86
表目錄
表2.1 各文獻所採用的皮質骨材料參數 12
表 2.2 各文獻所採用的海綿骨材料參數 13
表 2.3 各文獻所採用的後骨材料參數 13
表 2.4 各文獻所採用的髓核材料參數 16
表 2.5 各文獻所採用的纖維環材料參數 17
表 2.6 TAUT REGION起點與終點(Chazal et al[18]) 20
表 2.7 TAUT REGION起點與終點(Shiraziadl et al[19]) 20
表 2.8 各個韌帶應力應變曲線使用參數(Chazal et al.[18]) 21
表 2.9 各個韌帶應力應變曲線使用參數(Shiraziadl et al.[19]) 22
表 2.10 各個韌帶之Etaut (MPa) 23
表 2.11 各個韌帶之ε 23
表 2.12 本研究所使用的各種韌帶參數 23
表 3.1 材料參數整理表 49
表 3.2 元素資料整理表 50
表4.1 各種代號定義 55
表5.1 椎節L1骨折後植入骨水泥與打短(二)節骨釘的比較 79
表5.2椎間盤T11-T12在L1骨折節植入骨水泥與打短(二)節骨釘的比較79
表5.2椎間盤L2-L3在L1骨折節植入骨水泥與打短(二)節骨釘的比較 79


圖目錄
圖1.1 骨密度年齡分布圖[1] 2
圖 1.2 Denis三柱理論(前柱、中柱、後柱)[3] 3
圖 1.3 Denis之四種脊椎骨折分類[3] 3
圖1.4壓迫性骨折與爆裂性骨折示意圖[3] 4
圖2.1 人體脊椎結構圖[4] 7
圖2.2 FSU的矢狀圖(Sagittal Plane)[5] 8
圖2.3脊椎骨斷面圖[4] 10
圖2.4 海綿骨斷面圖[8] 10
圖2.5 端板、軟骨板及椎間盤[9] 11
圖 2.6 椎間盤的組織結構圖[12] 14
圖 2.7 纖維環的纖維方向示意圖[12] 16
圖 2.8 脊椎各韌帶位置示意圖[12] 18
圖 2.9 韌帶的應力-應變曲線[18] 19
圖 2.10 透過方程式所得之適合曲線(ISL、ALL) 22
圖 2.11 本研究各個韌帶應力應變曲線 24
圖 3.1(a) 全手動模型Guilhem[23]...............................................................26
圖 3.1(b) 半自動模型Polikeit[17] ……………...…………………….........26
圖 3.1(c) 全自動建立之模型Galbusera[24] 26
圖 3.2 有限元素分析流程圖 27
圖 3.3 頸椎模型正視圖 28
圖 3.4 胸椎模型側視、正視圖 29
圖 3.5 腰椎與薦椎模型側視、後視圖 29
圖 3.6 3D Doctor 使用步驟 30
圖 3.7 灰階值門檻控制 31
圖 3.8 椎體的外圍邊界線 31
圖 3.9 胸椎(左)和腰薦椎(右)的三維表面模型 32
圖 3.10 前處理步驟圖 33
圖 3.11 (a)胸椎表面模型 34
圖 3.11 (b)腰椎、薦椎表面模型……………………………………………34
圖 3.12 邊界平滑曲線圖 35
圖 3.13 Hard bar 元素上重新網格分割示意圖 35
圖 3.14(a) 上、下端板和邊界輪廓 37
圖 3.14(b) 外纖維環(左)、內纖維環(右) 37
圖3.14(c) 纖維環(左)、髓核(右) 37
圖3.15 整體脊椎示意圖:前視圖(左)、側視圖(中)、後視圖(右) 38
圖3.16 螺釘前緣部分 (左) 連接桿(右) 39
圖3.17 建立螺釘前緣部分相關步驟指令 40
圖3.18 Pedicle Screw殼元素模組 41
圖3.19(a) GEL = 1.2 mm 43
圖3.19(b) GEL = 1.0 mm 43
圖3.19(c) GEL = 0.8 mm 43
圖3.19(d) GEL = 0.6 mm 43
圖3.20 螺釘應力收斂性分析圖 44
圖3.21 螺釘位移收斂性分析圖 44
圖3.22 骨折節挖空處理(左圖) 骨折節弱化處理(右圖) 45
圖3.23(a) 體重和固定端邊界條件示意圖 46
圖 3.23(b) 前彎彎矩示意圖 47
圖 3.23(c) 後彎彎矩示意圖 47
圖 3.23(d) 側彎彎矩示意圖 48
圖 3.23(e) 扭轉彎矩示意圖 48
圖 3.24 上一下一固定方式螺釘在脊椎內的位置 52
圖4.1 椎間相對轉角正負方向的定義 54
圖4.2 前彎及後仰時椎間相對轉角計算方式(θ2-θ1為轉角) 54
圖4.3 側彎時椎間相對轉角計算方式(θ2-θ1為轉角) 54
圖4.4 IVD L1-L2相對轉角(有無椎弓螺釘比較) 56
圖4.5 IVD L1-L2相對轉角(材料參數比較) 57
圖4.6 骨折節相對轉角量測(左圖)前彎 (右圖)側彎 58
圖4.7骨折節L1相對轉角受材料參數的影響 59
圖4.8 Preload-150N與300N時骨折節L1相對轉角 59
圖4.9骨折節(L1椎節)最大應力取點 60
圖4.10 元素146293 最大Von Mises 應力受材料參數的影響 62
圖4.11 IVD T11-T12 最大Von Mises應力受材料參數的影響 62
圖4.12 IVD T12-L1 最大 Von Mises 應力受材料參數的影響 63
圖4.13 IVD L1-L2 最大 Von Mises 應力受材料參數的影響 63
圖4.14 IVD L2-L3 最大Von Mises應力受材料參數的影響 64
圖4.15 T10至L3椎節最大Von Mises應力受材料參數的影響 64
圖4.16元素146293最大Von Mises應力受植入骨釘的影響 66
圖4.17 IVD T11-T12最大Von Mises應力受植入骨釘的影響 67
圖4.18 IVD L2-L3 最大Von Mises應力受植入骨釘的影響 68
圖4.19 T10至L3椎節最大Von Mises應力受植入骨釘的影響 69
圖4.20 最大Von Mises應力發生位置(後仰動作和弱化10%) 70
圖4.21 最大Von Mises應力發生位置(後仰動作和弱化10%及兩節固定)70
圖4.22 元素146293 應變能密度受材料參數的影響 72
圖4.23 IVD T11-T12應變能密度受材料參數的影響 72
圖4.24 IVD T12-L1 應變能密度受材料參數的影響 72
圖4.25 IVD L1-L2 應變能密度受材料參數的影響 73
圖4.26 IVD L2-L3 應變能密度(材料參數比較) 73
圖4.27 元素Elm 146293 應變能密度受植入骨釘的影響 75
圖4.28 IVD T11-T12應變能密度受植入鋼釘的影響 76
圖4.29 IVD L2-L3 應變能密度受植入骨釘的影響 77
圖4.30 最大Von Mises應力受PMMA骨水泥與骨釘的影響 78
圖4.31 應變能密度受PMMA骨水泥與骨釘的影響 78

參考文獻 [1] J.Hommonga, H.Weinans, W. Gowin, Dieter Felsenberg, Rik Huiskes. Osteoporosis Changes the Amount of Vertebral Trabecular Bone at Risk of Fracture but Not the Vertebral Load Distribution. Spine Volume 26, Number 14, 1555-1511, 2001
[2] F. W. Holdsworth, “Fractures, Dislocations, and Fracture-Dislocations of The Spine,” Journal of Bone and Joint Surgery, vol. British 45 B, 1963.
[3] F. Denis, “The 3 Column Spine and Its Significance in The Classification of Acute Thoracolumbar Spinal-Injuries,” Spine, vol. 8, no. 8, pp. 817-831, 1983.
[4] H. Gray, Anatomy, descriptive and surgical: Random House Value Publishing, 1977.
[5] M. Nordin, and V. H. Frankel, Basic biomechanics of the musculoskeletal system: Lippincott Williams & Wilkins, 2001.
[6] P. W. Hitchon, J. C. Torner, S. F. Haddad et al., “Management options in thoracolumbar burst fractures,” Surgical Neurology, vol. 49, no. 6, pp. 619-626, Jun, 1998.
[7] M. J. Silva, C. Wang, T. M. Keaveny et al., “Direct and Computed tomography Thickness Measurements of The Human, Lumbar Vertebral Shell and Endplate,” Bone, vol. 15, no. 4, pp. 409-414, 2004.
[8] G. H. Bell, O. Dunbar, J. S. Beck et al., “Variations in Strength of Vertebrae with Age and Their Relation to Osteoporosis,” Calcified Tissue International, vol. 1:75, 1967.
[9] Strayer, Lumbar Spine Surgery - A Guide to Preoperative and Postoperative Patient Care, Barbara Schweize, 2009.
[10] R. D. Cook, Concepts and applications of finite element analysis: Wiley, 2001.
[11] R. N. Natarajan, and G. B. J. Andersson, “Modeling The Annular Incision in a Herniated Lumbar Intervertebral Disk to Study Its Effect on Disk Stability,” Computers & Structures, vol. 64, no. 5-6, pp. 1291-1297, Sep, 1997.
[12] A.A. White, and M. M. Panjabi, Clinical biomechanics of the spine: Lippincott, 1990.
[13] A.Polikeit, S. J. Ferguson, L. P. Nolte et al., “Factors Influencing Stresses in the Lumbar Spine after the Insertion of Intervertebral Cages: Finite Element Analysis,” European Spine Journal, vol. 12, no. 4, pp. 413-420, Aug, 2003.
[14] M. A. Adams, and W. C. Hutton, “The Effect of Posture on the Role of the Apophysea L Joints in Resisting Interverterral Compressive Forces,” Journal of Bone and Joint Surgery-British Volume, vol. 62, no. 3, pp. 358-362, 1980.
[15] M. Sharma, N. A. Langrana, and J. Rodriguez, “Role of Ligaments and Facets in Lumbar Spinal Stability,” Spine, vol. 20, no. 8, pp. 887-900, Apr, 1995.
[16] M. Sharma, N. A. Langrana, and J. Rodriguez, “Modeling of facet articu- lation as a nonlinear moving contact problem: Sensitivity study on lumbar facet response,” Journal of Biomechanical Engineering-Transactions of the Asme, vol. 120, no. 1, pp. 118-125, Feb, 1998.
[17] A.Polikeit, “Finite Element Analyses of the Lumbar Spine : Clinical Applications ”, 2002.
[18] J. Chazal, A. Tanguy, M. Bourges et al., “Biomechanical Properties of Spinal Ligaments and a Histological Study of the Supraspinal Ligament in Traction,” Journal of Biomechanics, vol. 18, no. 3, pp. 167-176, 1985.
[19] A.Shiraziadl, A. M. Ahmed, and S. C. Shrivastava, “A Finite-Element Study of a Lumbar Motion Segment Subjected to Pure Sagittal Plane Moments,” Journal of Biomechanics, vol. 19, no. 4, pp. 331-350, 1986.
[20] H. C. K. Naira, “Computational Analysis of The Time-Dependent Bio- mechanical Behavior of The Lumbar Spine,” 2004.
[21] M. J. G. Ruiz, and L. Y. S. Gonzalez, “Comparison of Hyperelastic Material Models in the Analysis of Fabrics,” International Journal of Clothing Science and Technology, vol. 18, no. 5, pp. 314-325, 2006.
[22] “ABAQUS CAE, Material Property Evaluation.”
[23] G. Denoziere, “Numerical Modeling of A Ligamentous Lumbar Motion Segment,” pp. 55-2, 2004.
[24] F.Galbusera, ” Biomechanics of the C5-C6 Spinal Unit Before and After Placement of a disc prosthesis,”pp.254, 2006.
[25] H. Chen, “A Finite Element study of the Biomechanical Behavior of the Nonlinear Ligamentous Thoracic and Lumbar Spine,” 2007.
[26] H. Agus, C. Kayali, and M. Arslantas, “Nonoperative Treatment of Burst-type Thoracolumbar Vertebra Fractures: Clinical and Radiological Results of 29 Patients,” European Spine Journal, vol. 14, no. 6, pp. 536-540, Aug, 2005.
[27] K. Wood, G. Butterman, A. Mehbod et al., “Operative Compared with Nonoperative Treatment of A Thoracolumbar Burst Fracture without Neurological Deficit - A Prospective, Randomized Study,” Journal of Bone and Joint Surgery-American Volume, vol. 85A, no. 5, pp. 773-781, May, 2003.
[28] P. Tropiano, R. C. Huang, C. A. Louis et al., “Functional and Radiographic Outcome of Thoracolumbar and Lumbar Burst Fractures Managed by closed Orthopaedic Reduction and Casting,” Spine, vol. 28, no. 21, pp. 2459-2465, Nov, 2003.
[29] M. Tezer, R. E. Erturer, C. Ozturk et al., “Conservative Treatment of Fractures of The Thoracolumbar Spine,” International Orthopaedics, vol. 29, no. 2, pp. 78-82, Apr, 2005.
[30] M. Alvis. "CT scan of T12 Burst fracture," http://www.mikealvis.com- /examplecases /thoracicburstfracture.html.
[31] C. Boyter. "Spinal Compression Fractures," http://69.8.250.19/spinal com- pression fractures.
[32] Y. Cotrel, and Dubousset, “A New Technic for Segmental Spinal Osteosynthesis Using The Posterior Approach,” vol. 70, no. 6, pp. 489-494, 1984.
[33] J. J. Yue, A. Sossan, C. Selgrath et al., “The Treatment of Unstable Thoracic Spine Fractures with Transpedicular Screw Instrumentation: A 3-year consecutive series,” Spine, vol. 27, no. 24, pp. 2782-2787, Dec, 2002.
[34] J. Glaser, M. Stanley, H. Sayre et al., “A 10-year follow-up Evaluation of Lumbar Spine Fusion with Pedicle Screw Fixation,” Spine, vol. 28, no. 13, pp. 1390-1395, Jul, 2003.
[35] I.Yamamoto, M. M. Panjabi, T. Crisco et al., “3-Dimensional Movements of The Whole Lumbar Spine and Lumbosacral Joint,” Spine, vol. 14, no. 11, pp. 1256-1260, Nov, 1989.
[36] P. W. Hitchon, M. D. Brenton, T. Serhan et al., “In Vitro Biomechanical Studies of An Anterior Thoracolumbar Implant,” Journal of Spinal Disorders & Techniques, vol. 15, no. 5, pp. 350-354, Oct, 2002.
[37] R. K. Wilcox, D. J. Allen, R. M. Hall et al., “A Dynamic Investigation of The Burst Fracture Process Using A Combined Experimental and Finite Element Approach,” European Spine Journal, vol. 13, no. 6, pp. 481-488, Oct, 2004.
[38] T. X. Qiu, L. X. Guo, and E. C. Teo, “Prediction of Biomechanical Characte- ristics of Intact and Injured Lower Thoracic Spine Segment Under Different Loads,” Journal of Musculoskeletal Research, vol. 8, no. 2-3, pp. 87-99, 2004.
[39] W. K. Wang, C. K. Cheng, J. P. Wang et al., “Finite Element Analysis of Fixation Methods of Thoracolumbar Burst Fracture,” Master Thesis, 2005.
[40] D. C. Markel, and G. P. Graziano, “A Comparison Study of Treatment of Thoracolumbar Fractures Using the Ace Posterior Segmental Fixator and Cotrel-Dubousset Instrumentation,” Orthopedics, vol. 18, no. 7, pp. 679-686, Jul, 1995.
[41] S. I. Esses, “Evaluation of Surgical Treatment for Burst Fracture,” 1989.
[42] W. T. Yang, “A Biomechanical Study of The Unilateral Intermediate Screw in The Short Segment Pedicular Fixation for Unstable Thoracolumbar Burst Fracture ”, 2007.
[43] E. Serin, L. Karakurt, Yilmaz. et al., “Effects of Two-Levels,Four-Levels, and Four-Levels plus Offset-Hook Posterior Fixation Techniques on Protecting The Surgical Correction of Unstable Thoracolumbar Vertebral Fractures: A Clinical Study,” European Journal of Orthopaedic Surgery &Traumatology, vol. 14, no. 1-6, 2004.
[44] A.L. Carl, S. G. Tromanhauser, and D. J. Roger, “Pedicle Screw Instrumen- tation for Thoracolumbar Burst Fractures and Fracture-Dislocations,” vol. 17, 1992.

[45] T. Pitzen, F. H. Geisler, D. Matthis et al., “The Influence of Cancellous Bone Density on Load Sharing in Human Lumbar Spine: a Comparison Between An Intact and A Surgically Altered Motion Segment,” European Spine Journal, vol. 10, no. 1, pp. 23-29, Feb, 2001.
[46] C.Hirsch, “The Reaction of Intervertebral Discs to Compression Forces,” J. Bone Joint Surg., vol. 37A, no. 1188, 1955.
[47] G. Baroud, J. Nemes, P. Heini et al., “Load Shift of the Intervertebral Disc After a Vertebroplasty: A Finite-Element Study,” European Spine Journal, vol. 12, no. 4, pp. 421-426, Aug, 2003.

[48] G. Shin, “Viscoelastic Responses of The Lumbar Spine During Prolonged Stooping,” 2005.
[49] K. Sairyo, V. K. Goel, A. Masuda et al., “Three-Dimensional Finite Element Analysis of The Pediatric Lumbar Spine. Part I: pathomechanism of apophyseal bony ring fracture,” European Spine Journal, vol. 15, no. 6, pp. 923-929, Jun, 2006.
[50] R. Eberlein, G. A. Holzapfel, and C. A. J. Schulze-Bauer, “An Anisotropic Model for Annulus Tissue and Enhanced Finite Element Analyses of Intact Lumbar Disc Bodies,” Comput Meth Biomech Biomed Eng, vol. 4, pp. 209-230, 2001.
[51] A.Rohlmann, N. K. Burra, T. Zander et al., “Comparison of the Effects of Bilateral Posterior Dynamic and Rigid Fixation Devices on the Loads in the Lumbar Spine: a Finite Element Analysis,” European Spine Journal, vol. 16, no. 8, pp. 1223-1231, Aug, 2007.
[52] V. K. Goel, H. Park, and W. Z. Kong, “Investigation of Vibration Characteristics of The Ligamentous Lumbar Spine Using The Finite-Element Approach,” Journal of Biomechanical Engineering- Transactions of the Asme, vol. 116, no. 4, pp. 377-383, Nov, 1994.
[53] K. L. Markolf, “Deformation of Thoracolumbar Interve- Rtebral Joints in Response to External Loads –Biomech- Chanical Study Using Autopsy material,” Journal of Bone and Joint Surgery-American Volume, vol. A 54, no. 3, pp. 511-&, 1972.
[54] 謝牧鄰:’以CT斷層掃描影像為基礎之脊椎有限元素分析’,土木工程研究所,2005,碩士論文.
[55] 林柏君:’電腦輔助腰椎之有限元素分析’, 土木工程研究所,2006,碩士論文.
[56] 林冠瑋:’電腦輔助脊椎之有限元素分析’, 土木工程研究所,2008,碩士論文.
[57] 劉哲榮:’後方腰椎間融合手術後應力重新分配之有限元素分析’, 土木工程研究所,2009,碩士論文.
[58] 楊瑷菁:’椎弓斷裂之脊椎滑脫對鄰近節影響之有限元素分析’, 土木工程研究所,2010,碩士論文.
[59] 蔡卓軒:’以有限元素法分析胸腰椎爆裂性骨折經後方脊椎內固定手術後對生物力學之影響’ 土木工程研究所,2011,碩士論文.
[60] 趙逸民:’以有限元素法腰薦椎解離性滑脫後對脊椎生物力學之影響’,土木工程研究所,2011,碩士論文.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-08-16起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw