進階搜尋


下載電子全文  
系統識別號 U0026-3006202022243100
論文名稱(中文) 廢氮化鎵之鎵、銦金屬資源再生研究
論文名稱(英文) Recovery of Gallium and Indium from Gallium Nitride-containing Waste
校院名稱 成功大學
系所名稱(中) 資源工程學系
系所名稱(英) Department of Resources Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 鍾毅樊
研究生(英文) Yi-Fan Chung
學號 N46071122
學位類別 碩士
語文別 中文
論文頁數 87頁
口試委員 指導教授-陳偉聖
口試委員-王立邦
口試委員-吳俊毅
中文關鍵字 廢棄LED  廢棄氮化鎵  廢棄物處理      鹼焙燒  溶媒萃取  資源循環再生 
英文關鍵字 Waste Gallium nitride  Gallium  Indium  Alkaline Roasting  Cyanex 272  Solvent extraction  Recovery 
學科別分類
中文摘要 本研究為針對廢發光二極管下腳料中鎵、銦資源再生技術開發,實驗採用冶金技術進行金屬的資源再生,主要可以分為以下五個部分,化學特性分析、前處理、酸溶浸漬、分離純化與金屬析出,最終產物得以回到產業端使用。
第一部分為廢棄氮化鎵粉末的特性分析,此步驟藉由化學組成分析做為後續本研究規劃的依據,並於第二部分選取合適的前處理技術-鹼焙燒,以改變氮化鎵的晶體結構使其轉變為氧化鎵鈉以利後續的浸漬溶出,在此主要成份為鎵、銦、鋁三種元素,目標金屬鎵與銦溶出率分別可達98.63%與98.31%
完成浸漬溶出後將所得浸出液進行第三部分-目標金屬鎵、銦的分離純化,主要方法為透過溶媒萃取進行金屬分離,並使用分離係數β(Separation factor)、分配比D(Distribution ratio)及萃取效率做為指標數據。本研究利用Cyanex272對於鎵、銦在不同pH值下萃取效率的差異進行兩階段萃取。第一階段萃取銦被選擇性萃取至有機相中,鎵、鋁則留在水相中,有機相中銦離子再藉由鹽酸反萃取至水溶液中,由實驗結果顯示,此階段銦的萃取率為99.08%;反萃取率則為99.9%。而第二階段萃取仍使用Cyanex272及鹽酸進行鎵之萃取與反萃取,將鎵與鋁進行分離,由結果顯示。鎵之一階萃取率為90.8%,以McCabe-Thiele理論顯示鎵之理論萃取階數為2階,而鎵之二階萃取率可達99.13%,最後反萃取率則為99.9%。
第四部分-金屬析出使用化學沉澱法與高溫煅燒方式回收金屬,可得到氧化鎵與氧化銦的產物。最終藉由儀器分析產品純度,氧化鎵與氧化銦之純度分別可達99.46%與99.17%。
英文摘要 With the expansion of LEDs markets, LEDs will contribute to a large stream of solid wastes along with abundant waste electric and electronic equipment (WEEE).Due to the importance and scarcity of gallium and indium, we develop the effective recycling processes of recovering gallium and indium from waste gallium nitride-containing waste LED dust. The procedure was divided into the following steps, alkaline roasting, leaching, separation and purification. In the pretreatment part, owing to the stable chemically properties of gallium nitride, the process would concentrate on bonding rupture. Hence, the gallium nitride was reacted into sodium gallium oxide by alkaline roasting. And the next, the leaching and separation part, which is mainly to dissolve the targets and separate the gallium and indium from each other, including leaching and solvent extraction. The optimal condition of leaching procedures and the optimal parameters including pH value, concentration of Cyanex272, A/O ratio and extraction time were investigated in this study.
In the final purification step, Ga2O3 and In2O3 were obtained by means of chemical precipitation and calcination. With the optimal conditions, the recovery rate of gallium and indium could reach to 99%, and the purity of Ga2O3 and In2O3 are over 99%. The process which was provided in this study can provide an effective method to treat the related waste light emitting diodes dust.
論文目次 目錄
中文摘要 I
誌謝 VIII
目錄 IX
表目錄 XIII
圖目錄 XIV
第一章 緒論 1
1.1前言 1
1.2 研究動機與目的 3
第二章 理論基礎與文獻回顧 4
2.1 氮化鎵(Gallium Nitride)之特性與鎵、銦資源現況概述 4
2.1.1氮化鎵(Gallium Nitride)之特性概述 4
2.1.2鎵之性質與資源量 5
2.1.3銦之性質與資源量 7
2.2廢棄物資源化技術 9
2.2.1火法冶金 9
2.2.2濕法冶金 10
2.2.3 氮化鎵之金屬鎵(Ga)、銦(In)資源化技術 13
2.3廢棄氮化鎵金屬分離純化理論基礎 16
2.3.1 溶媒萃取法 16
2.3.1.1 溶媒萃取法概述-萃取與反萃取 16
2.3.1.2 萃取劑、稀釋劑 16
2.3.1.3 萃取理論與計算 20
2.3.1.4反萃取理論與計算 21
2.3.2 沉澱結晶法 22
第三章 實驗方法與步驟 24
3.1實驗材料 24
3.1.1實驗樣品 24
3.1.2實驗藥品 24
3.2 研究架構 26
3.3 研究流程 28
3.3.1 廢棄氮化鎵材料之特性分析 28
3.3.2 浸漬預處理-鹼焙燒 28
3.3.3 浸漬溶出 29
3.3.4 溶媒萃取 29
3.3.5 金屬及其產物析出 33
3.4實驗設備及儀器 34
3.4.1 X射線螢光光譜儀(XRF) 34
3.4.2 X光繞射分析儀(XRD) 34
3.4.3 掃描式電子顯微鏡(SEM)與能量色散光譜儀(EDS) 35
3.4.4 雷射粒徑分析儀(LS) 35
3.4.5 感應耦合電漿原子發射光譜儀(ICP-OES) 36
3.4.6 熱重/熱差分析儀(TG/DTA) 36
第四章 結果與討論 37
4.1廢氮化鎵之材料特性分析 37
4.1.1廢氮化鎵粉末粒徑分析 37
4.1.2化學成分分析 39
4.1.3粉末結晶相分析 40
4.1.4粉末熱分析 41
4.2浸漬預處理-鹼焙燒 42
4.2.1鹼焙燒之熱分析 43
4.2.2鹼焙燒之焙燒溫度 44
4.2.3鹼焙燒之焙燒時間 45
4.2.4鹼焙燒小結 46
4.3酸溶浸漬 47
4.3.1 浸漬液種類之影響 47
4.3.2 浸漬液濃度之影響 49
4.3.3 浸漬液固比之影響 50
4.3.4 浸漬反應時間之影響 51
4.4 金屬分離純化研究 52
4.4.1 銦之選擇性萃取與反萃取 52
4.4.1.1 萃取參數-pH值 52
4.4.1.2 萃取參數-Cyanex 272濃度 54
4.4.1.3 萃取參數-水油比例(A/O ratio) 55
4.4.1.4 萃取參數-震盪時間 56
4.4.1.5 反萃取參數-HCl濃度 57
4.4.1.6 反萃取參數-油水比例O/A Ratio 58
4.4.1.7 反萃取參數-震盪時間 59
4.4.2 鎵之選擇性萃取與反萃取 60
4.4.2.1 萃取參數-pH值 60
4.4.2.2 萃取參數-Cyanex 272濃度 61
4.4.2.3 萃取參數-水油比例(A/O ratio) 62
4.4.2.4 萃取參數-震盪時間 63
4.4.2.5 反萃取參數-HCl濃度 64
4.4.2.6 反萃取參數-油水比例O/A Ratio 65
4.4.2.7 反萃取參數-震盪時間 66
4.4.3 理論萃取階數與McCabe-Thiele Diagram 67
4.4.4第一階段溶媒萃取最佳化參數與分離係數 68
4.4.5第二階段溶媒萃取最佳化參數與分離係數 69
4.5金屬化合物沉澱結晶研究探討 72
4.5.1沉澱結晶法 72
4.5.1.1鎵之沉澱結晶與鍛燒 72
4.5.1.2銦之沉澱結晶與鍛燒 74
4.5.2金屬氧化物產品表面特性分析 76
4.5.3組成分析 77
第五章 結論 78
5.1結論 78
5.2整體回收流程 80
參考文獻 81
參考文獻 [1] Pankove, J. Properties of Gallium Nitride. MRS Proceedings, 97, 1987.
[2] Jaskula, B.W., U.S. Geological Survey minerals yearbook—2018. U.S.Department of the Interior, (Ed.), Vol. 2018 Minerals Yearbook, Gallium, 2018.
[3] GaN Market Anticipates Rapid Ramp Up In 2016. (2020). Retrieved 22 May 2020.
[4] Moskalyk, R. Gallium: the backbone of the electronics industry. Minerals Engineering, 16(10), 921-929, 2003.
[5] Graedel, T., Allwood, J., Birat, J., Buchert, M., Hagelüken, C., & Reck, B. et al. What Do We Know About Metal Recycling Rates?. Journal of Industrial Ecology, 15(3), 355-366, 2011.
[6] Salazar, K., McNutt, M.K., Mineral Commodity Smmaries. In: U. S. D. o. t. I. U.S. Geological Survey (Ed.). U.S. Geological Survey, Reston, Virginia, Reston, Virginia, 2013, pp. 58, 2013.
[7] EU use of critical raw materials needs improvement for circular economy. MRS Bulletin, 43(3), 168-168, 2018.
[8] Martins, F., & Castro, H. Significance ranking method applied to some EU critical raw materials in a circular economy – priorities for achieving sustainability. Procedia CIRP, 84, 1059-1062, 2019.
[9] Hamada, H. Characterization of Gallium Indium Phosphide and Progress of Aluminum Gallium Indium Phosphide System Quantum-Well Laser Diode. Materials, 10(8), 875, 2017.
[10] Mori, Y., Terakado, O., & Hirasawa, M. Evaporation Behaviors of Cu(In,Ga)Se2 Semiconductor Compound via Pyrometallurgical Chlorination Process Utilizing Ammonium Chloride. Materials Transactions, 56(6), 883-888, 2015.
[11] Lu, F., Xiao, T., Lin, J., Ning, Z., Long, Q., & Xiao, L. et al. Resources and extraction of gallium, 2020.
[12] Luong, H., & Liu, J. Flotation separation of gallium from aqueous solution – Effects of chemical speciation and solubility. Separation And Purification Technology, 132, 115-119, 2014.
[13] Tolmachev, V., & Lundqvist, H. Rapid separation of gallium from zinc targets by thermal diffusion. Applied Radiation And Isotopes, 47(3), 297-299, 1996.
[14] Murakami, H., Nishihama, S., & Yoshizuka, K. Separation and recovery of gold from waste LED using ion exchange method. Hydrometallurgy, 157, 194-198, 2015.
[15] Nishinaka, K., Terakado, O., Tani, H., & Hirasawa, M. Pyrometallurgical Recovery of Gallium from GaN Semiconductor through Chlorination Process Utilizing Ammonium Chloride. MATERIALS TRANSACTIONS, 58(4), 688-691, 2017.
[16] Swain, B., Mishra, C., Kang, L., Park, K., Lee, C., Hong, H., & Park, J. Recycling of metal-organic chemical vapor deposition waste of GaN based power device and LED industry by acidic leaching: Process optimization and kinetics study. Journal of Power Sources, 281, 265-271, 2015.
[17] Lee, M., Ahn, J., & Lee, E. Solvent extraction separation of indium and gallium from sulphate solutions using D2EHPA. Hydrometallurgy, 63(3), 269-276. 2002.
[18] Chung, N., Nishimoto, J., Kato, O., & Tabata, M. Selective extraction of thallium(III) in the presence of gallium(III), indium(III), bismuth(III) and antimony(III) by salting-out of an aqueous mixture of 2-propanol. Analytica Chimica Acta, 477(2), 243-249, 2003.


[19] Zhang, X., Yin, G., & Hu, Z. Extraction and separation of gallium, indium and thallium with several carboxylic acids from chloride media. Talanta, 59(5), 905-912, 2003.
[20] Chen, W., Wang, Y., & Chiu, K. The separation and recovery of indium, gallium, and zinc from spent GZO(IGZO) targets. Journal Of Environmental Chemical Engineering, 5(1), 381-390, 2017.
[21] Nusen, S., Chairuangsri, T., Zhu, Z. Recovery of indium and gallium from synthetic leach solution of zinc refinery residues using synergistic solvent extraction with LIX 63 and Versatic 10 acid. Hydrometallurgy, 160, 137-146, 2016.
[22] Sasaki, Y., Oshima, T., & Baba, Y. Mutual separation of indium(III), gallium(III) and zinc(II) with alkylated aminophosphonic acids with different basicities of amine moiety. Separation And Purification Technology, 173, 37-43, 2017.
[23] Kuchekar, S., & Chavan, M. Separation of gallium, indium and thallium by extraction with n-octylaniline in chloroform. Talanta, 35(5), 357-360, 1988.
[24] Strelow, F., & van der Walt, T. Separation of trace amounts of indium, gallium and aluminium from each other by cation-exchange chromatography on AG50-X4 resin. Talanta, 34(10), 895-897, 1987.
[25] Tabata, T., Kokitsu, M., & Okada, O. Relationship between methane adsorption and selective catalytic reduction of nitrogen oxide by methane on gallium and indium ion-exchanged ZSM-5. Applied Catalysis B: Environmental, 6(3), 225-236, 1995.
[26] Fortes, M., Martins, A., & Benedetto, J. Indium adsorption onto ion exchange polymeric resins. Minerals Engineering, 16(7), 659-663, 2003.
[27] Xu, K., Deng, T., Liu, J., & Peng, W. Study on the recovery of gallium from phosphorus flue dust by leaching with spent sulfuric acid solution and precipitation. Hydrometallurgy,86(3-4),172177., 2007.
[28] White, S., Hussain, F., Hemond, H., Sacco, S., Shine, J., & Runkel, R. et al. The precipitation of indium at elevated pH in a stream influenced by acid mine drainage. Science of The Total Environment, 574, 1484-1491, 2017.
[29] Jiang, J., Liang, D., & Zhong, Q. Precipitation of indium using sodium tripolyphosphate. Hydrometallurgy, 106(3-4),165-169., 2011.
[30] UNEP – International Resource Panel. Recycling rates of metals: a status report. UNEP – International Resource Panel, 2011.
[31] Björklund, A., & Finnveden, G. Recycling revisited—life cycle comparisons of global warming impact and total energy use of waste management strategies. Resources, Conservation and Recycling, 44(4), 309-317, 2005.
[32] Elshkaki, A., & Graedel, T. Dynamic analysis of the global metals flows and stocks in electricity generation technologies. Journal of Cleaner Production, 59, 260-273, 2013.
[33] Atomic Weights of the Elements 2013 (IUPAC Technical Report). Chemistry International, 38(3-4), 2016.
[34] Phosphate rock in EU list of 20 critical raw materials. Focus on Surfactants, 2015(2), 4, 2015.
[35] Yamaguchi, M. Gallium Compounds. Chemin form, 36(27), 2005.
[36] U.S. Geological Survey, “Mineral Commodity Summaries 2015,”2015.
[37] U.S. Geological Survey, “Mineral Commodity Summaries 2016,”2016.
[38] U.S. Geological Survey, “Mineral Commodity Summaries 2017,”2017.
[39] U.S. Geological Survey, “Mineral Commodity Summaries 2018,”2018.
[40] U.S. Geological Survey, “Mineral Commodity Summaries 2019,”2019.
[41] Hines, C., Roberts, J., Andrews, R., Jackson, M., & Deddens, J. Use of and Occupational Exposure to Indium in the United States. Journal of Occupational and Environmental Hygiene, 10(12), 723-733, 2013.
[42] 南條道夫, “都市鉱山開発―包括的資源観によるリサイクルシステムの位置付け”, 東北大學選鑛製錬研究所彙報, 43, 239-251, 1988.
[43] Zhan, L., Xia, F., Ye, Q., Xiang, X., & Xie, B. Novel recycle technology for recovering rare metals (Ga, In) from waste light-emitting diodes, 2015.
[44] Zhou, J., Zhu, N., Liu, H., Wu, P., Zhang, X., & Zhong, Z. Recovery of gallium from waste light emitting diodes by oxalic acidic leaching. Resources, Conservation And Recycling, 146, 366-372, 2019.
[45] Gupta, B., Mudhar, N., & Singh, I. Separations and recovery of indium and gallium using bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272). Separation And Purification Technology, 57(2), 294-303, 2007.
[46] Gupta, B., Deep, A., & Malik, P. Liquid–liquid extraction and recovery of indium using Cyanex 923. Analytica Chimica Acta, 513(2), 463-471, 2004.
[47] Wei, S., Liu, J., Zhang, S., Chen, X., Liu, Q., & Zhu, L. et al. Stoichiometry, isotherms and kinetics of adsorption of In(III) on Cyanex 923 impregnated HZ830 resin from hydrochloric acid solutions. Hydrometallurgy, 164, 219-227., 2016.
[48] Ahmed, I., El-Nadi, Y., & El-Hefny, N. Extraction of gallium(III) from hydrochloric acid by Cyanex 923 and Cyanex 925. Hydrometallurgy, 131-132, 24-28, 2013.
[49] Nusen, S., Chairuangsri, T., Zhu, Z., & Cheng, C. Recovery of indium and gallium from synthetic leach solution of zinc refinery residues using synergistic solvent extraction with LIX 63 and Versatic 10 acid. Hydrometallurgy, 160, 137-146, 2016.
[50] Vartak, S. An extraction study of gallium, indium and thallium using TPASO as an extractant. Talanta, 45(5), 925-930, 1998.
[51] Lee, M., Ahn, J., & Lee, E. Solvent extraction separation of indium and gallium from sulphate solutions using D2EHPA. Hydrometallurgy, 63(3), 269-276, 2002.
[52] Lee, K. Physical Chemistry of Eh-pH Diagram. Journal Of The Korean Institute Of Surface Engineering, 50(1), 46-54, 2017.
[53] Flett, D. Solvent extraction in hydrometallurgy: the role of organophosphorus extractants. Journal of Organometallic Chemistry, 690(10), 2426-2438, 2005.
[54] Imura, H., Oshiro, A., & Ohashi, K. Synergistic Extraction of Gallium(III) and Indium(III) with 2,4-Pentanedione and 3,5-Dichlorophenol on the Basis of Outer-Sphere Complexation. Analytical Sciences, 14(6), 1093-1098, 1998.
[55] Naik and, M., & Dhadke, P. Solvent Extraction of Indium(III) with Bis(2-Ethylhexyl) Phosphinic Acid in Toluene. Journal of chemical engineering of Japan, 32(3), 366-369, 1999.
[56] Sato, T., Sato, K., Noguchi, Y., & Ishikaw, I. Liquid-Liquid Extraction of Trivalent Gallium, Indium and Thallium from Hydrochloric Acid Solutions by Tributyl Phosphate and Trioctylamine. Shigen-To-Sozai, 113(3), 185-192, 1997.
[57] Sato, T. Liquid-Liquid Extraction of Trivalent Gallium, Indium and Thallium from Hydrochloric Acid Solutions by Trioctyl Phosphine Oxide. Shigen-To-Sozai, 112(2), 123-128, 1996.
[58] De, A., & Sen, A. Solvent extraction and separation of gallium(III), indium(III), and thallium(III) with tributylphosphate. Talanta, 14(6), 629-635, 1967.
[59] Avila Rodriguez, M., Cote, G., & Bauer, D. Recovery of Indium (III) From Mixed Hydrochloric Acid-Sulphuric Acid Media by Solvent Extraction with Cyanex301. Solvent Extraction And Ion Exchange, 10(5), 811-827, 1992
[60] Gupta, B., Deep, A., & Malik, P. Liquid–liquid extraction and recovery of indium using Cyanex 923. Analytica Chimica Acta, 513(2), 463-471, 2004.
[61] B. Kokare et al., “Liquid - Liquid Extraction of Cerium(Iv) From Salicylate Media Using N-7V-Octylaniline in Xylene As an Extractant,” Journal of the Chilean Chemical Society, 55(4), 431-435, 2010.
[62] A. Boualia, A. Mellah, A. Silem, “The effect of raw and sulfonated kerosene-type diluent on the solvent extraction of uranium and co-extractable impurities from solutions. Part 1. Uranyl nitrate solution,” Hydrometallurgy, 24(1), 1-9, 1990.
[63] A. Silem, A. Boualia, A. Mellah, “The effect of raw and sulfonated kerosene-type diluent on the solvent extraction of uranium and co-extractable impurities from solutions. Part 2. Industrial phosphoric acid,” Hydrometallurgy, 24(1), 1-9, 1990.
[64] Maarefvand, M., Sheibani, S., & Rashchi, F. Recovery of gallium from waste LEDs by oxidation and subsequent leaching. Hydrometallurgy, 191, 105230., 2020.
[65] Zhao, Z., Cui, L., Guo, Y., Li, H., & Cheng, F. Recovery of gallium from sulfuric acid leach liquor of coal fly ash by stepwise separation using P507 and Cyanex 272. Chemical Engineering Journal, 381, 122699, 2020.
[66] Yang, J., Retegan, T., & Ekberg, C. Indium recovery from discarded LCD panel glass by solvent extraction. Hydrometallurgy, 137, 68-77. 2013.
[67] 張魁芳、曹佐英、蕭連生P507從硫酸體系中萃取鎵的研究,礦冶工程,第三十四卷第六期, 2014.
[68] Jayachandran, J., & Dhadke, P. Solvent extraction separation of gallium(III) with 2-ethylhexyl phosphonic acid mono 2-ethylhexyl ester (PC-88A). Hydrometallurgy, 50(2), 117-124, 1998.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-07-08起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-07-08起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw