進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-3006202017142400
論文名稱(中文) 整合遙感探測及3D Web-GIS技術建立三維都市熱環境平台
論文名稱(英文) Integrating Remote Sensing and 3D Web-GIS Technology to Establishing Three-dimensional Urban Thermal Environment
校院名稱 成功大學
系所名稱(中) 測量及空間資訊學系
系所名稱(英) Department of Geomatics
學年度 108
學期 2
出版年 109
研究生(中文) 譚宇竹
研究生(英文) Yu-Chu Tan
學號 P66074159
學位類別 碩士
語文別 中文
論文頁數 81頁
口試委員 指導教授-饒見有
口試委員-林子平
口試委員-徐逸祥
中文關鍵字 3D Web-GIS  都市熱環境  物件導向影像分析  地表溫度三維模型 
英文關鍵字 3D Web-GIS  Urban thermal environment  OBIA  3D LST model 
學科別分類
中文摘要 近年來,氣候變化問題導致城市溫度升高,根據研究表明不同的地表覆蓋會對都市熱島效應有不同貢獻量,對於建築物而言太陽光直射屋頂,其屋頂材質吸熱程度直接影響著頂樓住戶的舒適度,進而提高空調需求,而空調亦是造成熱島效應的因子之一,在此惡性循環下將會使都市溫度及能源消耗不斷增加,地表溫度增加也會造成行人尺度熱舒適度降低。但是,如何使居住在城市中的居民容易和簡單地了解何種土地覆蓋會對城市溫度產生影響,是本研究要解決的問題。

對於非專業學者的民眾來說,二維地表溫度圖和科學數據表示不直觀且難以理解。因此,在這種情況下,將城市溫度的3D可視化並整合至3D Web-GIS中是合適的解決方案。首先使用UAV搭載FLIR Duo Pro R熱紅外相機及MicaSense RedEdge-M多光譜相機獲取資料,並使用波段套合方法分別將兩種相機的影像資料轉換為相同像幾何,改善波段錯位現象,即可進行後續空三及建模工作,在這個程序裡我們會產製DSM(Digital Surface Model)、多光譜、熱紅外正射影像、三維地表溫度模型及三維仿真模型。

使用OBIA(Object-Based Image Analysis)技術結合高程資訊及多光譜影像資料進行土地覆蓋分類,將分類好的成果及模型匯入TerraExplorer軟體,軟體中可以將土地覆蓋成果內的土地覆蓋類別及溫度屬性賦予給網格模型,這樣即可查看模型上的材質及溫度,最後使用TerraExplorer提供的應用程序編程接口(API)進行二次開發,建立客製化的3D Web-GIS平台,將帶有屬性的三維地表溫度模型、仿真模型成果發佈至3D Web-GIS,提供使用者操作、分析、瀏覽都市熱環境。
英文摘要 In recent years, climate change has caused urban temperatures to increase. According to research, different surface coverage will contribute differently to the Urban Heat Island(UHI) effect. However, how to make residents living in cities easy to understand what kind of objects, materials and types of buildings will affect the city temperature is the problem to be solved in this research. But for the non-expert, the representation of two-dimensional surface temperature maps and scientific data is not intuitive and difficult to understand. Therefore, in this case, integrating 3D visualization of urban temperature into 3D Web-GIS is the appropriate solution. First use Unmanned Aerial Vehicle(UAV) equipped with FLIR Duo Pro R and RedEdge-M camera to obtain data, and use band co-registration method to transform each bands to the same image geometry respectively, to improve the problem of band mis-registration, then the subsequent aerotriangulation and modeling works can be performed. In this program, we will produce Digital Surface Model(DSM), thermal infrared(TIR) ortho image, multispectral ortho image, 3D Land Surface Temperature(LST) model and photo-realistic 3D Real model. Next, we use Object-Based Image Analysis (OBIA) technology to combine elevation information and multispectral data to perform land cover classification. The classification results and the model produced in the previous step are imported into TerraExplorer. TerraExplorer can classify mesh model by land cover classification data, and give the attribute information into model, so we can identify the material and temperature on the model. In the final, the application programming interface (API) provided by TerraExplorer was used for secondary development to create a customized 3D Web-GIS platform and providing users to operate, analyze, and browse urban thermal environment.
論文目次 第1章 緒論 1
1.1研究背景 1
1.2研究動機與目的 2
第2章 文獻回顧 4
2.1都市熱島效應 4
2.2無人機搭載熱紅外及多光譜感測器 4
2.2.1多光譜感測器 4
2.2.2熱紅外感測器 5
2.3土地覆蓋分類 8
2.4都市三維地表溫度模型 8
2.5 3D WEB-GIS 9
第3章.儀器設備與實驗測試區 11
3.1儀器設備 11
3.2無人飛行載具系統 12
3.3實驗測試區 13
第4章.研究方法 16
4.1研究流程圖 16
4.2波段套合 18
4.2.1 N-SURF 18
4.2.2 Extended Projective Transform (EPT) 19
4.3空拍影像資料處理 20
4.3.1特徵匹配及空三平差 20
4.3.2 網格模型及正射影像 23
4.3.3 多光譜影像反射率改正 23
4.4物件導向式影像分析 25
4.4.1影像切割 25
4.4.2幾何屬性 27
4.4.3鄰近物件相關屬性 27
4.4.4地形資訊屬性 28
4.4.5波譜屬性 29
4.5 熱紅外影像溫度改正 31
4.5.1線性回歸模型改正 32
4.5.2土地覆蓋發射率溫度改正 34
4.6 3D WEB-GIS架構 35
4.6.1 建置3D Web-GIS方法 36
第5章.研究成果及討論 38
5.1 波段套合成果 38
5.2 空拍影像資料成果 39
5.2.1空三平差成果 39
5.2.2 空拍影像資料處理成果 43
5.2.3 多光譜影像反射率改正成果 45
5.3物件導向影像式分類成果 47
5.3.1 分類成果 47
5.3.2混淆矩陣分析 51
5.4 熱紅外正射影像溫度改正成果 54
5.5 都市地表溫度與土地覆蓋關係 58
5.6三維都市熱環境平台 61
5.6.1三維都市熱環境平台介面及功能 61
5.6.2 視覺化分析成果討論 63
第6章.結論與展望 74
6.1 波段套合 74
6.2 空拍影像資料處理 74
6.3 物件導向影像分析 75
6.4 熱紅外影像溫度改正 75
6.5 3D WEB-GIS 76
6.6 未來展望 76
參考文獻 77

參考文獻 Agapiou, A., Hadjimitsis, D. G., & Alexakis, D. D., 2012. Evaluation of broadband and narrowband vegetation indices for the identification of archaeological crop marks. Remote Sensing, 4(12), 3892-3919.

Baluja, J., Diago, M. P., Balda, P., Zorer, R., Meggio, F., Morales, F., & Tardaguila, J., 2012. Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV). Irrigation Science, 30(6), 511-522.

Becker, F., & Li, Z.-L., 1990. Temperature-independent spectral indices in thermal infrared bands. Remote sensing of Environment, 32(1), 17-33.

Berni, J. A., Zarco-Tejada, P. J., Suárez, L., & Fereres, E., 2009. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Transactions on geoscience and Remote Sensing, 47(3), 722-738.

Blaschke, T., 2010. Object based image analysis for remote sensing. ISPRS journal of photogrammetry and remote sensing, 65(1), 2-16.

Fraser, C.S., 1997. Digital Camera Self-Calibration. ISPRS Journal of Photogrammetry and Remote Sensing 52, 149-159.

Gillespie, A. R., 1986. Lithologic mapping of silicate rocks using TIMS.

Hartmann, W., Tilch, S., Eisenbeiss, H., & Schindler, K., 2012. Determination of the UAV position by automatic processing of thermal images. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 39, B6.

H.Bay, A. Ess, T. Tuytelaars, L. Van Gool., 2008. Speeded-up robust features (SURF). Comput. Vis. Image Underst., 110, 346-359

Jensen, J. R., 2007. Remote sensing of the environmentan earth resource perspective. Pearson Education.

Jhan, J.-P., Rau, J.-Y., & Huang, C.-Y., 2016. Band-to-band registration and ortho-rectification of multilens/multispectral imagery: A case study of MiniMCA-12 acquired by a fixed-wing UAS. ISPRS journal of photogrammetry and remote sensing, 114, 66-77.

Jhan, J.-P., Rau, J.-Y., & Haala, N., 2018. Robust and adaptive band-to-band image transform of UAS miniature multi-lens multispectral camera. ISPRS journal of photogrammetry and remote sensing, 137, 47-60.

Jhan, J.-P., Rau, J.-Y., 2019. A normalized SURF for multispectral image matching and band co-registration. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences.

Kealy, P. S., 1990. Estimation of emissivity and temperature using alpha coefficients. Paper presented at the Proceedings of the Second Thermal Infrared Multispectral Scanner (TIMS) Workshop.

Liang, S., 2001. An optimization algorithm for separating land surface temperature and emissivity from multispectral thermal infrared imagery. IEEE Transactions on geoscience and Remote Sensing, 39(2), 264-274.

Mora, C., Dousset, B., Caldwell, I. R., Powell, F. E., Geronimo, R. C., Bielecki, C. R., . . . Louis, L. V., 2017. Global risk of deadly heat. Nature Climate Change, 7(7), 501-506.

Oruc, M., Marangoz, A., & Buyuksalih, G., 2004. Comparison of pixel-based and object-oriented classification approaches using Landsat-7 ETM spectral bands. Int Archiv Photogrammetry Remote Sensing spatial Inf Sci, 35, 1118-1122.

Quattrochi, D. A., & Luvall, J. C., 1999. Thermal infrared remote sensing for analysis of landscape ecological processes: methods and applications. Landscape ecology, 14(6), 577-598.

Rau, J.-Y., & Cheng, C.-K. (2013). A cost-effective strategy for multi-scale photo-realistic building modeling and web-based 3-D GIS applications in real estate. Computers, Environment and Urban Systems, 38, 35-44.

Sabins Jr, F., 1996. Remote Sensing: Principles and Interpretation . New York: W. H: Freeman Publications.

Skelhorn, C., Lindley, S., & Levermore, G., 2014. The impact of vegetation types on air and surface temperatures in a temperate city: A fine scale assessment in Manchester, UK. Landscape and Urban Planning, 121, 129-140.

Snyder, W. C., Wan, Z., Zhang, Y., & Feng, Y.-Z., 1998. Classification-based emissivity for land surface temperature measurement from space. International Journal of Remote Sensing, 19(14), 2753-2774.

Stagakis, S., González-Dugo, V., Cid, P., Guillén-Climent, M. L., & Zarco-Tejada, P. J., 2012. Monitoring water stress and fruit quality in an orange orchard under regulated deficit irrigation using narrow-band structural and physiological remote sensing indices. ISPRS journal of photogrammetry and remote sensing, 71, 47-61.

Tong, X., Xie, H., & Weng, Q., 2013. Urban land cover classification with airborne hyperspectral data: What features to use? IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(10), 3998-4009.

Valor, E., & Caselles, V., 1996. Mapping land surface emissivity from NDVI: Application to European, African, and South American areas. Remote sensing of Environment, 57(3), 167-184.

Watson, K., 1992. Spectral ratio method for measuring emissivity. Remote sensing of Environment, 42(2), 113-116.

Weng, Q., Lu, D., & Schubring, J., 2004.Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote sensing of Environment, 89(4), 467-483.

Whiteside, T., & Ahmad, W., 2005. A comparison of object-oriented and pixel-based classification methods for mapping land cover in northern Australia. Paper presented at the Proceedings of SSC2005 Spatial intelligence, innovation and praxis: The national biennial Conference of the Spatial Sciences Institute.

Zhou, K., 2010. Structure & motion, structure in pattern recognition, Vienna University of Technology, faculty of informatics, Institute of Computer Graphics and Algorithms. Pattern Recognition and Image Processing Group.

王冠中, 2012. 都市土地利用型與地表溫度關係之探究── 以台北市為例. 國立台灣大學森林環境暨資源學研究所碩士論文.

白祐瑋, 2017. 無人機窄波段多光譜影像於地物分類之研究. 國立成功大學測量及空間資訊學系研究所碩士論文

石婉瑜, 2018. 臺北盆地的熱環境特徵與都市綠色基盤的影響. 都市與計劃, 45(4), 283-300.

那至中, 2010. 面陣列熱影像特性之研究. 國立政治大學私立中國地政研究所碩士論文

沈俊祺, 2010. 3D Web GIS空間決策支援系統之開發 - 以台灣道路交通噪音預測為例. 國立台灣大學地理環境資源學系研究所碩士論文

林宏昱, 2017. 整合紅外線熱影像與可見光影像之熱影像三維模型重建. 國立中興大學土木工程學系研究所碩士論文.

章國威, 王淑姿, 申雍, 羅正宗, 黃鼎名, 蔡和霖, 2006. 應用抽穗期多光譜航照影像預估水稻產量之研究. 航測及遙測學刊, 11(1), 27-38.

廖家翎, 2015. 熱影像建製數值地表溫度模型之研究. 國立政治大學私立中國地政研究所碩士論文.

鄭雅文, 史天元, 蕭國鑫, 2008. 物件導向分類於高解析度影像自動判釋. Journal of Photogrammetry and Remote Sensing, 13(4), 273-284.

鄭婉純, 2003. 都市土地利用與都市氣溫關係之研究-台中市直轄市之實證研究. 私立逢甲大學土地管理學系研究所碩士論文.

MicaSense (2019, August 17) Use of Calibrated Reflectance Panels For RedEdge Data. Retrieved from https://support.micasense.com/hc/en-us/articles/115000765514-Use-of-Calibrated-Reflectance-Panels-For-RedEdge-Data

MicaSense (2019, August 17) What are the units of the Atlas GeoTIFF output?. Retrieved from https://support.micasense.com/hc/en-us/articles/215460518-What-are-the-units-of-the-Atlas-GeoTIFF-output-

Terraexplorer: API Reference Guide. Retrieved from http://www.skyline.co.il/SkylineGlobe/TerraExplorer/v5.1.2/APIReferenceGuide/index.htm

Skyline: SkylineGlobe v7.0产品技术白皮书. Retrieved from http://help.skylineglobe.cn/upload/SkylineGlobe7/SkylineGlobe%20v7.0.pdf?fbclid=IwAR1VcAYcPFYkWXrayKYyNWQTWW98LxChwuy7hO3I81HQQGQBWR8sDY0SA2Y
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-12-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw